Deutsch: Der Restklassenring graphisch dargestellt. Jedem der 60 Elemente von ist eine Spalte und eine Zeile zugeordnet. Das Produkt zweier Elemente ist dann farblich an der entsprechenden Position dargestellt, dabei steht schwarz für die Null, rot für die Eins und grün für den Rest (also 2-59). Damit lässt sich anhand des Beispiels sofort ablesen, welche Elemente aus invertierbar sind. Genau die, in deren Zeile oder Spalte ein roter Punkt auftritt. Damit lässt sich dann auch sofort das inverse Element ablesen (die jeweils andere Koordinate). Des Weiteren folgt daraus, dass in jeder Zeile und jeder Spalte mit rotem Punkt nur ein einziger schwarzer auftaucht (nämlich an erster Stelle für die Null). Die Anzahl aller roten Punkte ist dann gerade (siehe Eulersche φ-Funktion), also die Anzahl der invertierbaren Elemente in . Da die Multiplikation in kommutativ ist, ist das Bild symmetrisch.
Beispiele:
Die erste Spalte und erste Zeile ist komplett schwarz, da und für alle x Null ist.
Das Feld (1,1) ist rot, da .
Das Feld (7,43) ist auch rot, da in .
Das Feld (18,4) ist grün, da in .
Die 30. Spalte ist abwechselnd schwarz und grün, da abwechselnd Null und 30 ist (für gerade x Null, für ungerade 30).
Jobu0101 in der Wikipedia auf Deutsch, der Urheberrechtsinhaber dieses Werkes, veröffentlicht es hiermit unter der folgenden Lizenz:
Es ist erlaubt, die Datei unter den Bedingungen der GNU-Lizenz für freie Dokumentation, Version 1.2 oder einer späteren Version, veröffentlicht von der Free Software Foundation, zu kopieren, zu verbreiten und/oder zu modifizieren; es gibt keine unveränderlichen Abschnitte, keinen vorderen und keinen hinteren Umschlagtext.
Der vollständige Text der Lizenz ist im Kapitel GNU-Lizenz für freie Dokumentation verfügbar.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.