Die Theorie der stochastischen Integration befasst sich mit Integralen und Differentialgleichungen in der Stochastik. Sie verallgemeinert die Integralbegriffe von Henri Léon Lebesgue und Thomas Jean Stieltjes auf eine breitere Menge von Integratoren. Es sind stochastische Prozesse mit unendlicher Variation, insbesondere der Wiener-Prozess, als Integratoren zugelassen. Die Theorie der stochastischen Integration stellt dabei die Grundlage der stochastischen Analysis dar, deren Anwendungen sich zumeist mit der Untersuchung stochastischer Differentialgleichungen beschäftigen.
Geschichte
Schon Norbert Wiener untersuchte Integrale von deterministischen Integranden bezüglich der brownschen Bewegung der Form[1]
und mehrdimensionale stochastische Integrale dieser Form. Itō Kiyoshi verallgemeinerte diese Resultate und die moderne Theorie der stochastischen Integration baut im Wesentlichen auf seiner Arbeit auf. 2000 wurde ein versiegelter Umschlag von Wolfgang Döblin aus dem Jahre 1940 geöffnet. Darin befanden sich Resultate über die stochastische Integration, die er Itō Kiyoshi vorwegnahm. Döblin verstarb allerdings im selben Jahr, weshalb die Arbeit unentdeckt blieb.
Stochastische Integration
Es existieren verschiedene stochastische Integralbegriffe.
Generell muss, um klassische stochastische Integrale zu konstruieren (Wiener, Itō, Stratonowitsch), der Integrand gewisse Kriterien der Messbarkeit und Integrierbarkeit erfüllen. Sei hier der Raum der -adaptierten, stetigen lokalen Martingale mit . Für mit definiert man den L2-Hilbert-Raum der Äquivalenzklassen von , wobei für durch
definiert ist (die Norm wird durch induziert). Die richtige Wahl der Integranden sind die -integrierbaren progressiv-messbaren . Möchte man allgemeiner gegen nicht-stetige Semimartingale integrieren, dann muss man die Klasse der Integranden auf vorhersagbare Prozesse beschränken.[2]
Integralbegriff nach Wiener
Sei der klassische Wiener-Raum mit dem Wiener-Maß . Sei ein Funktional auf , dann nennt man das Integral
Wiener-Integral.[3][4] Allgemein werden Integrale einer deterministischen Funktion bezüglich eines Wiener-Prozesses so bezeichnet. Der Satz von Cameron-Martin beschäftigt sich in seiner ursprünglichen Form mit diesem Integral.
Integralbegriffe nach Itō und Stratonowitsch
Itō-Integral
Das Itō-Integral ist zunächst für Semimartingale und für elementare vorhersagbare Prozesse definiert, d. h. für (an eine Filtration adaptierte) stochastische Prozesse der Form
durch
Die elementaren Prozesse können alternativ auch allgemeiner mit Stoppzeiten anstelle von deterministischen Zeitpunkten definiert werden.
Sei der Raum der adaptierten Càglàd-Prozesse und der Raum der elementaren vorhersagbaren Prozesse. Wir nennen die Topologie, welche durch die gleichmäßige Konvergenz auf kompakten Mengen in Wahrscheinlichkeit erzeugt wird, die UCP-Topologie (UCP für englisch uniformly on compact in probability). Man kann nun zeigen, dass in der UCP-Topologie dicht in liegt. Damit lässt sich das stochastische Integral (als lineare Abbildung ) auf fortsetzen. Konkret: Das Ito-Integral eines Prozesses ist also definiert als der Grenzwert
für jede Folge von Prozessen , die gegen konvergieren (bzgl. der UCP-Topologie). Die Definition ist in der Tat unabhängig von der gewählten Folge.
In der allgemeinsten Formulierung werden als Integratoren Semimartingale und als Integranden vorhersagbare Prozesse zugelassen (die zusätzlich gewisse Integrierbarkeitsbedingungen erfüllen). Sind die Integratoren zusätzlich stetig, genügt es für die Integranden progressiv-messbar (und in ) zu sein.
Als Folge der (abstrakten) Konstruktion des Integrals erhält man folgenden anschaulicheren Zusammenhang:
Seien ein Semimartingal und ein adaptierter Càdlàg- oder Càglàd-Prozess. Dann gilt für jede Folge reeller Zahlen mit und für jede Folge von Partitionen des Intervalls mit die Konvergenz
in Wahrscheinlichkeit , wobei (die linkstetige Version von ) und . Dies lässt sich auch kompakter schreiben als
Die Aussage gilt sogar allgemeiner für Folgen von random partitions tending to the identity, was aber mehr Notation für die Definition des Begriffs erfordert.[5]
Stratonowitsch-Integral
Für ein Semimartingal und ein adaptierter Càdlàg-Prozess , sodass die quadratische Kovariation existiert, kann man das Stratonowitsch-Integral oder Fisk-Stratonowitsch-Integral (nach Ruslan Leontjewitsch Stratonowitsch und Donald Fisk) definiert durch
wobei das Itō-Integral und der Sprung von an der Stelle sind. Daraus folgt ähnlich wie beim Ito-Integral eine anschaulichere Darstellung des Integrals: Seien und wie in der obigen Definition und gelte zusätzlich, dass und keine Sprünge zum gleichen Zeitpunkt haben, d. h. . Dann gilt für jede Folge reeller Zahlen mit und für jede Folge von Partitionen des Intervalls mit die Konvergenz
- .
Auch hier gilt die Aussage noch allgemeiner für sequences of random partitions tending to the identity.
Vergleich der Integrale
Beim Itō-Integral wird der Integrand also stets am Anfang des -Intervalls ausgewertet, bei Stratonowitsch werden der Anfangs- und Endwert gemittelt. Bei gewöhnlichen (Riemann- oder Lebesgue-) Integralen von deterministischen (nicht zufälligen) und hinreichend glatten (beispielsweise stetigen) Funktionen hat dies keinen Einfluss auf das Ergebnis, doch im stochastischen Fall gilt: Sind und nicht unabhängig, so kann das tatsächlich zu verschiedenen Werten führen (siehe Beispiel unten).
Verallgemeinerungen
Integralbegriff nach Ogawa
Der Integralbegriff ist für nicht-adaptierte Integranden. Man bildet eine Zufallsreihe mit Hilfe eines orthonormalen Systems im -Hilbertraum und lässt diese dann gegen das Ogawa-Integral konvergieren. Der entsprechende Kalkül wird nicht-kausales Kalkül genannt.[6]
Integralbegriff nach Marcus
Eine Verallgemeinerung des Fisk-Stratonowitsch-Integrals auf allgemeine Semimartingale mit Sprüngen ist das Marcus-Integral. Stochastische Differentialgleichungen mit diesem Integralbegriff nennt man vom Marcus-Typ. Marcus entwickelte ein Kalkül, welches auf dem Kalkül von McShane basiert.[7]
Integralbegriff nach Hitsuda-Skorochod
Eine Erweiterung des Itō-Integrals auf nicht-adaptierte Prozesse ist das Hitsuda-Skorochod-Integral.[8] Das Integral ist ein Spezialfall des adjungierten Operators des Ableitungsoperator der Malliavin-Ableitung. Im Falle der Integrierbarkeit bezüglich der brownschen Bewegung und der Adaptierbarkeit des Integranden erhält man gerade das Itō-Integral. Alternativ lässt sich das Integral auch über die Wiener-Chaos-Zerlegung definieren.
Integralbegriff nach Walsh
Das Walsh-Integral ist ein Integral bezüglich eines Martingal-Maßes, um stochastische partielle Differentialgleichungen zu studieren. Das Integral wurde von John B. Walsh eingeführt. Von Robert C. Dalang existiert eine Erweiterung für distributionelle Integranden.
Beispiele
- Sei ein (Standard-)Wiener-Prozess. Trivialerweise für .
- Sei ein (Standard-)Wiener-Prozess. Zu berechnen ist das Itō-Integral . Schreibt man der Kürze halber und benutzt man die Identität
- so erhält man aus obiger Integrationsvorschrift
- Benutzt man nun einerseits, dass gilt, sowie andererseits die Eigenschaft, dass i.i.d. -verteilt ist (wegen der unabhängigen, normalverteilten Zuwächse der Brownschen Bewegung), so folgt mit dem Gesetz der großen Zahlen für den hinteren Grenzwert
- Um das entsprechende Stratonowitsch-Integral zu berechnen, nutzt man die Stetigkeit der Brownschen Bewegung aus:
- Itō- und Stratonowitsch-Integral über demselben Prozess führen also zu verschiedenen Ergebnissen, wobei das Stratonowitsch-Integral eher der intuitiven Ahnung aus der gewöhnlichen (deterministischen) Integralrechnung entspricht.
Martingaleigenschaft
Der bei weitem am häufigsten verwendete Integrator ist eine Brownsche Bewegung. Der entscheidende Vorteil, den das Stratonowitsch-Integral nicht hat und der letztendlich dazu führte, dass sich das Itō-Integral weitgehend als Standard durchgesetzt hat, ist die folgende Eigenschaft:
- Sei ein Lévy-Prozess mit konstantem Erwartungswert, eine nicht vorgreifende beschränkte Funktion von und (d. h., für jedes ist messbar bezüglich der σ-Algebra , die von den Zufallsvariablen erzeugt wird), so ist der Prozess
- ein lokales Martingal bezüglich der natürlichen Filtrierung von . Unter zusätzlichen Beschränktheitsbedingungen ist der Integralprozess sogar ein Martingal.
Anwendung: Itō-Prozess
Ausgehend vom Itōschen Integralbegriff ist es nun möglich, eine breite Klasse von stochastischen Prozessen zu definieren: Ein stochastischer Prozess wird Itō-Prozess genannt, wenn es eine Brownsche Bewegung und stochastische Prozesse , gibt mit
- ,
wobei angenommen wird, dass die beiden Integrale existieren.[9] In Differentialschreibweise wird diese Gleichung als
notiert. Ein Itō-Prozess kann also als verallgemeinerter Wiener-Prozess mit zufälliger Drift und Volatilität angesehen werden.
Das Prädikat „ ist ein Itō-Prozess“ wird somit zu einem stochastischen Pendant zum Begriff der Differenzierbarkeit. Ausgehend hiervon wurden dann von Itō selbst die ersten stochastischen Differentialgleichungen definiert.
Hängen der Driftkoeffizient und der Diffusionskoeffizient nicht von der Zeit ab, so spricht man von Itō-Diffusion; hängen sie zusätzlich von der Zeit ab, so liegt dagegen ein allgemeinerer Itō-Prozess vor.
Durch zahlreiche Anwendungen in der mathematischen Modellierung, insbesondere in der statistischen Physik und der Finanzmathematik, hat sich der Itō-Kalkül inzwischen zu einem unverzichtbaren mathematischen Werkzeug entwickelt.
Siehe auch
Literatur
- J. Jacod, A. Shiryaev: Limit theorems for stochastic processes. Springer, Berlin.
- P. Protter: Stochastic integrals and differential equations. Springer, Berlin.
Einzelnachweise
- ↑ J. L. Doob: Wiener's work in probability theory. In: American Mathematical Society (Hrsg.): Bulletin of the American Mathematical Society. Band 72, 1966, S. 69–72 (projecteuclid.org).
- ↑ Daniel Revuz und Marc Yor: Continuous Martingales and Brownian Motion. In: Springer (Hrsg.): Grundlehren der mathematischen Wissenschaften. Band 293, 1999 (englisch).
- ↑ Alexandre Joel Chorin: Accurate Evaluation of Wiener Integrals. In: American Mathematical Society (Hrsg.): Mathematics of Computation. Band 27, Nr. 121, 1973, S. 1–15.
- ↑ Norbert Wiener: Generalized harmonic analysis. In: Acta Math. Band 55, 1930, S. 117–258.
- ↑ Philip Protter: Stochastic Integration and Differential Equations A New Approach. 2. korrigierte Auflage. Springer-Verlag, Berlin / Heidelberg 1990, ISBN 978-3-662-02619-9, S. 49–51, 57, 216, 228 (302 S.).
- ↑ S. Ogawa: Sur le produit direct du bruit blanc par lûi-même. In: C. R. Acad. Sci. Série A Paris t. Band 288, 1979, S. 359–362.
- ↑ Steven Marcus: Modeling and approximation of stochastic differential equation driven by semimartigales. In: Stochastics. Band 4, 1981, S. 223–245.
- ↑ A. V. Skorokhod: On a Generalization of a Stochastic Integral. In: Theory of Probability & Its Applications. Band 20, Nr. 2, 1976, S. 219–233, doi:10.1137/1120030.
- ↑ Hui-Hsiung Kuo: Introduction to Stochastic Integration. Springer, 2006, ISBN 978-0-387-28720-1, S. 102 (eingeschränkte Vorschau in der Google-Buchsuche).