Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Quinär – Wikipedia
Quinär – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie
Eine quinäre Struktur (aus einer historischen Flagge Portugals)

Als quinär (von lateinisch quinarius, „fünf enthaltend“) bezeichnet man Objekte oder Strukturen, die aus fünf Teilen bestehen und aus diesen Elementen zusammengesetzt oder in sie zerlegt werden können. Sprachlich verwandt sind Unär (1), Binär (2), Ternär (3), Quaternär (4), Senär (6), Septenär (7), und Denär (10).

Quinäres Zahlensystem

[Bearbeiten | Quelltext bearbeiten]

Als Quinärsystem bezeichnet man ein Zahlensystem, das auf der Basis 5 fußt (siehe auch Stellenwertsystem). Im Gegensatz zum gewohnten Dezimalsystem, das die Basis 10 benutzt und geschichtlich von den zehn Fingern des Menschen herrührt, werden im Quinärsystem sozusagen nur die fünf Finger einer Hand benutzt. Zur Beschreibung einer beliebigen Zahl können beispielsweise die bei uns gebräuchlichen arabische Ziffern „0“ bis „4“ benutzt werden. Die Zahl 5 würde im Quinärsystem dann als „10“ dargestellt werden, analog beispielsweise die Zahl 25 als „100“ entsprechend 1·5²+0·5+0 oder die Zahl 586 als „4321“ aus 4·5³+3·5²+2·5+1.

Ein Dezimalsystem mit der Zahl 5 als Unterbasis wird als biquinäres System bezeichnet. Ein Beispiel ist das System der römischen Zahlen, in der beispielsweise die Zahl 8 als VIII geschrieben wird.

Mündliche Zahlwortsysteme mit der Basiszahl 5 sind selten. Bekannt sind die Maya-Sprache Chontal sowie Tucano und Betoya aus Südamerika.[1][2] Bei mehreren Sprachen indigener Völker in Ozeanien ist die Zahl 5 als Basiszahl oder Bündelung von Bedeutung.[3]

In Bantusprachen sind die Namen der Zahlen 6, 7, 8 und 9 oft Fremdwörter oder als 5 + 1, 5 + 2, 5 + 3, 5 + 4 verstehbar, was auf ein Zahlensystem zur Basis 5 hinweist.

In einem Dialekt des südamerikanischen Stammes der Betoya wird die Verwendung der Basis 5 sehr deutlich:[2]

Zählen bis 23 mit einer Strichliste
1 tey
2 cayapa
3 toazumba
4 cajezea = 2 mit Pluralendung
5 teente = Hand
6 tey ente-tey = Hand + 1
7 tey ente cayapa = Hand + 2
8 tey ente toazumba = Hand + 3
9 tey ente caesea = Hand + 4
10   caya ente oder caya huena   = 2 Hände
11 caya ente-tey = 2 Hände + 1.
15 toazumba-ente = 3 Hände
16 toazumba-ente-tey = 3 Hände + 1
20 caesea ente = 4 Hände
23 caesea ente toazumba = 4 Hände + 3

Ein Ansatz der Bündelung in Fünferblöcken besteht auch beim Gebrauch dementsprechender Strichlisten (Bild).

Quinäre Chiffrierung

[Bearbeiten | Quelltext bearbeiten]

In der Kryptographie wird eine Verschlüsselung, die auf einem Alphabet von genau fünf Zeichen basiert, als quinäre Chiffrierung bezeichnet. Ein berühmtes Beispiel ist das von den deutschen Militärs im Ersten Weltkrieg an der Westfront eingesetzte ADFGX-Verfahren, das ein Alphabet nur aus den fünf Buchstaben „A“, „D“, „F“, „G“ und „X“ verwendete.

Quinäre Strukturen in der Heraldik

[Bearbeiten | Quelltext bearbeiten]

Auch in der Heraldik finden quinäre Strukturen ihre Anwendung. Ein bekanntes Beispiel ist im portugiesischen Wappen in Form von fünf in Kreuzform angeordneten Schildlein zu finden, die als Quinas bezeichnet werden.

Literatur

[Bearbeiten | Quelltext bearbeiten]
  • John Harris: Facts and fallacies of aboriginal number systems. Work Papers of SIL-AAB Series B 8, S. 153–181. aiatsis.gov.au (Memento vom 8. Februar 2012 im Internet Archive) (PDF; 1,3 MB; englisch) abgerufen 13. Juni 2008.
  • August F. Pott: Die Sprachverschiedenheit in Europa an den Zahlwörten nachgewiesen sowie quinäre und vigesimale Zählmethode. Halle an der Saale 1868; Neudruck Amsterdam 1971.

Weblinks

[Bearbeiten | Quelltext bearbeiten]
  • Quinäre Zahlenkonvertierung (englisch)

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. ↑ Gisa Eysen: „Untersuchungen zu Strukturen von Zahlwortsystemen.“ Verlag Dr. Kovač, Hamburg 2008, ISBN 978-3-8300-4062-0, S. 174.
  2. ↑ a b Levi Leonard Conant: The Number Concept. Project Gutenberg (englisch)
  3. ↑ Gisa Eysen: „Untersuchungen zu Strukturen von Zahlwortsystemen.“ Verlag Dr. Kovač, Hamburg 2008, ISBN 978-3-8300-4062-0, S. 97.
Stellenwertsysteme (Basis/Grundzahl)

Unärsystem (1) • Dualsystem (2) • Ternärsystem (3) • Quaternärsystem (4) • Quinärsystem (5) • Senärsystem (6) • Septenärsystem (7) • Oktalsystem (8) • Dezimalsystem (10) • Duodezimalsystem (12) • Hexadezimalsystem (16) • Vigesimalsystem (20) • Base32 (32) • Base58 (58) • Sexagesimalsystem (60) • Base64 (64) • Base85 (85)

Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Quinär&oldid=252249826“
Kategorien:
  • Zeichenkodierung
  • Zahlensystem

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id