Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Quasi-Diedergruppe – Wikipedia
Quasi-Diedergruppe – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie

In der Mathematik sind Quasi-Diedergruppen gewisse endliche nicht-abelsche Gruppen der Ordnung 2 n {\displaystyle 2^{n}} {\displaystyle 2^{n}}, wobei n ≥ 4 {\displaystyle n\geq 4} {\displaystyle n\geq 4} ist.

Definition

[Bearbeiten | Quelltext bearbeiten]

Eine Quasi-Diedergruppe ist eine Gruppe, die von zwei Elementen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} der Form

⟨ a , b ∣ a 2 n − 1 = b 2 = 1 , b a b = a 2 n − 2 − 1 ⟩ {\displaystyle \langle a,b\mid a^{2^{n-1}}=b^{2}=1,bab=a^{2^{n-2}-1}\rangle } {\displaystyle \langle a,b\mid a^{2^{n-1}}=b^{2}=1,bab=a^{2^{n-2}-1}\rangle }

mit n ≥ 4 {\displaystyle n\geq 4} {\displaystyle n\geq 4} erzeugt wird.

Anzahl Elemente

[Bearbeiten | Quelltext bearbeiten]

Aus b a b = a 2 n − 2 − 1 {\displaystyle bab=a^{2^{n-2}-1}} {\displaystyle bab=a^{2^{n-2}-1}} folgt wegen b 2 = 1 {\displaystyle b^{2}=1} {\displaystyle b^{2}=1}, dass b a = a 2 n − 2 − 1 b {\displaystyle ba=a^{2^{n-2}-1}b} {\displaystyle ba=a^{2^{n-2}-1}b}. Also kann jedes endliche Produkt der Erzeuger a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} der Quasi-Diedergruppe durch Anwendung dieser Regel auf die Form a i b j {\displaystyle a^{i}b^{j}} {\displaystyle a^{i}b^{j}} gebracht werden. Wegen a 2 n − 1 = b 2 = 1 {\displaystyle a^{2^{n-1}}=b^{2}=1} {\displaystyle a^{2^{n-1}}=b^{2}=1} folgt:

Die Quasi-Diedergruppe hat 2n Elemente: { 1 , a , a 2 , … , a 2 n − 1 , b , b a , b a 2 , … , b a 2 n − 1 } {\displaystyle \{1,a,a^{2},\ldots ,a^{2^{n-1}},b,ba,ba^{2},\ldots ,ba^{2^{n-1}}\}} {\displaystyle \{1,a,a^{2},\ldots ,a^{2^{n-1}},b,ba,ba^{2},\ldots ,ba^{2^{n-1}}\}}

Beispiel

[Bearbeiten | Quelltext bearbeiten]

Die kleinste Quasi-Diedergruppe hat die Ordnung 16 {\displaystyle 16} {\displaystyle 16} und wird von zwei Elementen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} erzeugt, die die Gleichungen a 8 = b 2 = 1 {\displaystyle a^{8}=b^{2}=1} {\displaystyle a^{8}=b^{2}=1} und b a b = a 3 {\displaystyle bab=a^{3}} {\displaystyle bab=a^{3}} erfüllen. Da b 2 = 1 {\displaystyle b^{2}=1} {\displaystyle b^{2}=1}, folgt aus der letzten Gleichung nach Rechtsmultiplikation mit b {\displaystyle b} {\displaystyle b}, dass b a = a 3 b {\displaystyle ba=a^{3}b} {\displaystyle ba=a^{3}b}. Also kann man in einer beliebigen Folge von a {\displaystyle a} {\displaystyle a}'s und b {\displaystyle b} {\displaystyle b}'s jedes vor einem a {\displaystyle a} {\displaystyle a} stehende b {\displaystyle b} {\displaystyle b} hinter das a {\displaystyle a} {\displaystyle a} bringen, wenn man dieses durch a 3 {\displaystyle a^{3}} {\displaystyle a^{3}} ersetzt. Daraus folgt dann, dass alle Elemente dieser Gruppe von der Form 1 , a , a 2 , … , a 7 , b , a b , … , a 7 b {\displaystyle 1,a,a^{2},\ldots ,a^{7},b,ab,\ldots ,a^{7}b} {\displaystyle 1,a,a^{2},\ldots ,a^{7},b,ab,\ldots ,a^{7}b} sind. Ferner lassen sich mit obigen Gleichungen sämtliche Multiplikationen in der Gruppe bestimmen. Als Beispiel betrachten wir die beiden Produkte aus a 2 {\displaystyle a^{2}} {\displaystyle a^{2}} und a 3 b {\displaystyle a^{3}b} {\displaystyle a^{3}b}:

a 2 ⋅ a 3 b = a 5 b {\displaystyle a^{2}\cdot a^{3}b=a^{5}b} {\displaystyle a^{2}\cdot a^{3}b=a^{5}b}     (denn a 2 a 3 = a 5 {\displaystyle a^{2}a^{3}=a^{5}} {\displaystyle a^{2}a^{3}=a^{5}})
a 3 b ⋅ a 2 = a 3 a 3 b a = a 3 a 3 a 3 b = a 9 b = a b {\displaystyle a^{3}b\cdot a^{2}=a^{3}a^{3}ba=a^{3}a^{3}a^{3}b=a^{9}b=ab} {\displaystyle a^{3}b\cdot a^{2}=a^{3}a^{3}ba=a^{3}a^{3}a^{3}b=a^{9}b=ab}     (zweimal b {\displaystyle b} {\displaystyle b} nach rechts bringen und a 8 = 1 {\displaystyle a^{8}=1} {\displaystyle a^{8}=1} verwenden)

Insgesamt erhalten wir die folgende Verknüpfungstafel

⋅ {\displaystyle \,\cdot } {\displaystyle \,\cdot } 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b}
1 {\displaystyle \,1} {\displaystyle \,1} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b}
a {\displaystyle \,a} {\displaystyle \,a} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b}
a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab}
a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b}
a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b}
a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b}
a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b}
a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} 1 {\displaystyle \,1} {\displaystyle \,1} a {\displaystyle \,a} {\displaystyle \,a} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} b {\displaystyle \,b} {\displaystyle \,b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b}
b {\displaystyle \,b} {\displaystyle \,b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}}
a b {\displaystyle \,ab} {\displaystyle \,ab} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}}
a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}}
a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1}
a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a}
a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}}
a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}}
a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 7 b {\displaystyle \,a^{7}b} {\displaystyle \,a^{7}b} a 2 b {\displaystyle \,a^{2}b} {\displaystyle \,a^{2}b} a 5 b {\displaystyle \,a^{5}b} {\displaystyle \,a^{5}b} b {\displaystyle \,b} {\displaystyle \,b} a 3 b {\displaystyle \,a^{3}b} {\displaystyle \,a^{3}b} a 6 b {\displaystyle \,a^{6}b} {\displaystyle \,a^{6}b} a b {\displaystyle \,ab} {\displaystyle \,ab} a 4 b {\displaystyle \,a^{4}b} {\displaystyle \,a^{4}b} a 7 {\displaystyle \,a^{7}} {\displaystyle \,a^{7}} a 2 {\displaystyle \,a^{2}} {\displaystyle \,a^{2}} a 5 {\displaystyle \,a^{5}} {\displaystyle \,a^{5}} 1 {\displaystyle \,1} {\displaystyle \,1} a 3 {\displaystyle \,a^{3}} {\displaystyle \,a^{3}} a 6 {\displaystyle \,a^{6}} {\displaystyle \,a^{6}} a {\displaystyle \,a} {\displaystyle \,a} a 4 {\displaystyle \,a^{4}} {\displaystyle \,a^{4}}

Siehe auch

[Bearbeiten | Quelltext bearbeiten]
  • Diedergruppe
  • Liste kleiner Gruppen

Literatur

[Bearbeiten | Quelltext bearbeiten]
  • Bertram Huppert: Endliche Gruppen (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 134, ISSN 0072-7830). Band 1. Springer, Berlin u. a. 1967, S. 90–93.
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Quasi-Diedergruppe&oldid=152878856“
Kategorie:
  • Endliche Gruppe

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id