Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Proendliche Gruppe – Wikipedia
Proendliche Gruppe – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie

In der Mathematik ist eine proendliche oder profinite Gruppe eine topologische Gruppe G, die der inverse (projektive) Limes eines Systems von endlichen Gruppen ist. Dieser Limes wird in der Kategorie der topologischen Gruppen gebildet; hierbei betrachtet man jede endliche Gruppe als topologische Gruppe mit der diskreten Topologie. Eine topologische Gruppe ist genau dann proendlich, wenn sie Hausdorffsch, kompakt und total unzusammenhängend ist.

Beispiele

[Bearbeiten | Quelltext bearbeiten]
  • Jede endliche Gruppe ist offensichtlich auch proendlich (wähle als System endlicher Gruppen nur die Gruppe selbst).
  • Die p-adischen Zahlen Z p {\displaystyle \mathbb {Z} _{p}} {\displaystyle \mathbb {Z} _{p}} und die proendlichen Zahlen Z ^ {\displaystyle {\widehat {\mathbb {Z} }}} {\displaystyle {\widehat {\mathbb {Z} }}} sind Beispiele für unendliche proendliche Gruppen.
  • Jede Galoisgruppe einer Galoiserweiterung L|K (versehen mit der Krulltopologie) ist proendlich.
  • Ist G eine beliebige Gruppe, dann erhält man eine proendliche Gruppe Ĝ, die proendliche Vervollständigung oder proendliche Komplettierung von G, indem man den inversen Limes der G/H nimmt, wobei H alle Normalteiler von G von endlichem Index durchläuft.

Literatur

[Bearbeiten | Quelltext bearbeiten]
  • John Cassels, Albrecht Froehlich: Algebraic Number Theory. Proceedings of an instructional conference. Academic Press, London 1993, ISBN 0-12-163251-2 (Nachdr. d. Ausg. London 1965).
  • Jürgen Neukirch: Algebraische Zahlentheorie. Springer, Berlin 2007, ISBN 978-3-540-37547-0 (Nachdr. d. Ausg. Berlin 1992).
  • Laurent Bartholdi: Profinite Groups, Mathematical Snapshots, Oberwolfach 2016
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Proendliche_Gruppe&oldid=199479540“
Kategorien:
  • Gruppe (Mathematik)
  • Algebraische Zahlentheorie
  • Topologie

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id