Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Liste mathematischer Symbole – Wikipedia
Liste mathematischer Symbole – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie
Einige mathematische Symbole

Diese Liste mathematischer Symbole zeigt eine Auswahl der gebräuchlichsten Symbole, die in moderner mathematischer Notation innerhalb von Formeln verwendet werden. Da es praktisch unmöglich ist, alle jemals in der Mathematik verwendeten Symbole aufzuführen, werden in dieser Liste nur diejenigen Symbole angegeben, die häufig im Mathematikunterricht oder im Mathematikstudium auftreten. Viele der Zeichen sind genormt, beispielsweise in DIN 1302 Allgemeine mathematische Zeichen oder DIN EN ISO 80000-2 Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik.

Die folgende Liste beschränkt sich weitgehend auf nicht-alphanumerische Zeichen. Sie ist nach Teilgebieten der Mathematik unterteilt und innerhalb der Teilgebiete inhaltlich gruppiert. Manche Symbole haben je nach Kontext eine unterschiedliche Bedeutung und tauchen entsprechend mehrmals in der Liste auf. Weiterführende Informationen zu den Symbolen und ihrer Bedeutung finden sich in den jeweils verlinkten Artikeln.

Erklärung

[Bearbeiten | Quelltext bearbeiten]

Für jedes mathematische Symbol werden folgende Informationen angegeben:

Symbol
Das Symbol, wie es durch LaTeX dargestellt wird. Bei mehreren typografischen Varianten wird nur eine der Varianten gezeigt.
Verwendung
Eine beispielhafte Verwendung des Symbols innerhalb einer Formel. Buchstaben stehen hierbei als Platzhalter für Zahlen, Variablen oder komplexere Ausdrücke. Unterschiedliche Verwendungsmöglichkeiten werden separat aufgeführt.
Interpretation
Eine kurze textuelle Beschreibung der Bedeutung der Formel in der vorangegangenen Spalte.
Artikel
Der Wikipedia-Artikel, in dem die Bedeutung (Semantik) des Symbols behandelt wird.
LaTeX
Der LaTeX-Befehl, mit dem das Symbol erzeugt wird. Zeichen aus dem ASCII-Zeichensatz können mit wenigen Ausnahmen (Rautezeichen, Backslash, geschweifte Klammern, Prozentzeichen) direkt verwendet werden. Hoch- und Tiefstellung erfolgt über die Zeichen ^ und _ und ist nicht explizit angegeben. Einige der Zeichen erfordern das Verwenden der Packages amsmath und/oder amssymb.
Unicode
Der Codepunkt des entsprechenden Unicode-Zeichens. Manche Zeichen sind kombinierend und erfordern die Eingabe weiterer Zeichen. Bei Klammern werden jeweils die Codepunkte der öffnenden und der schließenden Klammer angegeben.

Logik

[Bearbeiten | Quelltext bearbeiten]

Definitionszeichen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
: {\displaystyle :} {\displaystyle :} A := B {\displaystyle A:=B} {\displaystyle A:=B} A {\displaystyle A} {\displaystyle A} wird per Definition gleich B {\displaystyle B} {\displaystyle B} gesetzt Definition : U+003A
A :⇔ B {\displaystyle A:\Leftrightarrow B} {\displaystyle A:\Leftrightarrow B} A {\displaystyle A} {\displaystyle A} wird per Definition gleichwertig zu B {\displaystyle B} {\displaystyle B} gesetzt

Junktoren

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∧ {\displaystyle \land } {\displaystyle \land } A ∧ B {\displaystyle A\land B} {\displaystyle A\land B} Aussage A {\displaystyle A} {\displaystyle A} und Aussage B {\displaystyle B} {\displaystyle B} Konjunktion (Logik) \land U+2227
∨ {\displaystyle \lor } {\displaystyle \lor } A ∨ B {\displaystyle A\lor B} {\displaystyle A\lor B} Aussage A {\displaystyle A} {\displaystyle A} oder Aussage B {\displaystyle B} {\displaystyle B} (oder beide) Disjunktion \lor U+2228
⇒ {\displaystyle \Rightarrow } {\displaystyle \Rightarrow } A ⇒ B {\displaystyle A\Rightarrow B} {\displaystyle A\Rightarrow B} aus Aussage A {\displaystyle A} {\displaystyle A} folgt Aussage B {\displaystyle B} {\displaystyle B} Implikation \Rightarrow U+21D2
→ {\displaystyle \rightarrow } {\displaystyle \rightarrow } A → B {\displaystyle A\rightarrow B} {\displaystyle A\rightarrow B} \rightarrow U+2192
⇔ {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow } A ⇔ B {\displaystyle A\Leftrightarrow B} {\displaystyle A\Leftrightarrow B} Aussage A {\displaystyle A} {\displaystyle A} folgt aus Aussage B {\displaystyle B} {\displaystyle B} und umgekehrt Logische Äquivalenz \Leftrightarrow U+21D4
↔ {\displaystyle \leftrightarrow } {\displaystyle \leftrightarrow } A ↔ B {\displaystyle A\leftrightarrow B} {\displaystyle A\leftrightarrow B} \leftrightarrow U+2194
∨ ˙ {\displaystyle {\dot {\lor }}} {\displaystyle {\dot {\lor }}} A ∨ ˙ B {\displaystyle A\,{\dot {\lor }}\,B} {\displaystyle A\,{\dot {\lor }}\,B} entweder Aussage A {\displaystyle A} {\displaystyle A} oder Aussage B {\displaystyle B} {\displaystyle B} Kontravalenz/Antivalenz \,\dot\lor\, U+2A52
⊻ {\displaystyle \veebar } {\displaystyle \veebar } A ⊻ B {\displaystyle A\,\veebar \,B} {\displaystyle A\,\veebar \,B} \veebar U+22BB
⇎ {\displaystyle \nLeftrightarrow } {\displaystyle \nLeftrightarrow } A ⇎ B {\displaystyle A\nLeftrightarrow B} {\displaystyle A\nLeftrightarrow B} \nLeftrightarrow U+21CE
↮ {\displaystyle \nleftrightarrow } {\displaystyle \nleftrightarrow } A ↮ B {\displaystyle A\nleftrightarrow B} {\displaystyle A\nleftrightarrow B} \nleftrightarrow U+21AE
≁ {\displaystyle \nsim } {\displaystyle \nsim } A ≁ B {\displaystyle A\nsim B} {\displaystyle A\nsim B} \nsim U+2241
⊕ {\displaystyle \oplus } {\displaystyle \oplus } A ⊕ B {\displaystyle A\oplus B} {\displaystyle A\oplus B} \oplus U+2295
¬ {\displaystyle \lnot } {\displaystyle \lnot } ¬ A {\displaystyle \lnot A} {\displaystyle \lnot A} nicht Aussage A {\displaystyle A} {\displaystyle A} Negation \lnot U+00AC
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} A ¯ {\displaystyle {\overline {A}}} {\displaystyle {\overline {A}}} \bar U+0305
Siehe auch: Weitere Symbole für zweistellige Junktoren

Quantoren

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∀ {\displaystyle \forall } {\displaystyle \forall } ∀ x {\displaystyle \forall \,x} {\displaystyle \forall \,x} für alle Elemente x {\displaystyle x} {\displaystyle x} Allquantor \forall U+2200
⋀ {\displaystyle \bigwedge } {\displaystyle \bigwedge } ⋀ x {\displaystyle \bigwedge _{x}} {\displaystyle \bigwedge _{x}} \bigwedge U+22C0
∃ {\displaystyle \exists } {\displaystyle \exists } ∃ x {\displaystyle \exists \,x} {\displaystyle \exists \,x} es existiert mindestens ein Element x {\displaystyle x} {\displaystyle x} Existenzquantor \exists U+2203
⋁ {\displaystyle \bigvee } {\displaystyle \bigvee } ⋁ x {\displaystyle \bigvee _{x}} {\displaystyle \bigvee _{x}} \bigvee U+22C1
∃ ! {\displaystyle \exists !} {\displaystyle \exists !} ∃ ! x {\displaystyle \exists !\,x} {\displaystyle \exists !\,x} es existiert genau ein Element x {\displaystyle x} {\displaystyle x} Anzahlquantor \exists! U+2203
⋁ ⋅ {\displaystyle \bigvee ^{\centerdot }} {\displaystyle \bigvee ^{\centerdot }} ⋁ x ⋅ {\displaystyle \bigvee _{x}^{\centerdot }} {\displaystyle \bigvee _{x}^{\centerdot }} \dot\bigvee U+2A52
∄ {\displaystyle \nexists } {\displaystyle \nexists } ∄ x {\displaystyle \nexists \,x} {\displaystyle \nexists \,x} es existiert kein Element x {\displaystyle x} {\displaystyle x} Existenzquantor \nexists U+2204

Deduktionszeichen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
⊢ {\displaystyle \vdash } {\displaystyle \vdash } A ⊢ B {\displaystyle A\vdash B} {\displaystyle A\vdash B} Aussage B {\displaystyle B} {\displaystyle B} ist syntaktisch aus Aussage A {\displaystyle A} {\displaystyle A} ableitbar Ableitbarkeitsrelation \vdash U+22A2
⊨ {\displaystyle \models } {\displaystyle \models } A ⊨ B {\displaystyle A\models B} {\displaystyle A\models B} Aussage B {\displaystyle B} {\displaystyle B} folgt semantisch aus Aussage A {\displaystyle A} {\displaystyle A} Schlussfolgerung \models, \vDash U+22A8
⊨ A {\displaystyle \models A} {\displaystyle \models A} Aussage A {\displaystyle A} {\displaystyle A} ist allgemeingültig Tautologie (Logik)
⊤ {\displaystyle \top } {\displaystyle \top } A ⊤ {\displaystyle A\top } {\displaystyle A\top } \top U+22A4
⊥ {\displaystyle \bot } {\displaystyle \bot } A ⊥ {\displaystyle A\bot } {\displaystyle A\bot } Aussage A {\displaystyle A} {\displaystyle A} ist widersprüchlich Kontradiktion \bot U+22A5
∴ {\displaystyle \therefore } {\displaystyle \therefore } A ∴ B {\displaystyle A\therefore B} {\displaystyle A\therefore B} Aussage A {\displaystyle A} {\displaystyle A} ist wahr, daher ist auch Aussage B {\displaystyle B} {\displaystyle B} wahr Ableitung (Logik) \therefore U+2234
∵ {\displaystyle \because } {\displaystyle \because } A ∵ B {\displaystyle A\because B} {\displaystyle A\because B} Aussage A {\displaystyle A} {\displaystyle A} ist wahr, denn auch Aussage B {\displaystyle B} {\displaystyle B} ist wahr \because U+2235
↯ Widerspruch Widerspruchsbeweis \lightning U+21AF
◼ {\displaystyle \blacksquare } {\displaystyle \blacksquare } Ende des Beweises quod erat demonstrandum \blacksquare U+220E
◻ {\displaystyle \Box } {\displaystyle \Box } \Box U+25A1

Mengenlehre

[Bearbeiten | Quelltext bearbeiten]

Mengenkonstruktion

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∅ {\displaystyle \emptyset } {\displaystyle \emptyset } ∅ {\displaystyle \emptyset } {\displaystyle \emptyset } leere Menge Leere Menge \emptyset -
∅ {\displaystyle \varnothing } {\displaystyle \varnothing } ∅ {\displaystyle \varnothing } {\displaystyle \varnothing } \varnothing U+2205
{   } {\displaystyle \{~\}} {\displaystyle \{~\}} {   } {\displaystyle \{~\}} {\displaystyle \{~\}} \{ \} U+007B U+007D
{ a , b , … } {\displaystyle \{a,b,\ldots \}} {\displaystyle \{a,b,\ldots \}} Menge bestehend aus den Elementen a {\displaystyle a} {\displaystyle a}, b {\displaystyle b} {\displaystyle b} und so weiter Menge (Mathematik), Klasse (Mengenlehre)
∣ {\displaystyle \mid } {\displaystyle \mid } { a ∣ A ( a ) } {\displaystyle \{a\mid A(a)\}} {\displaystyle \{a\mid A(a)\}} Menge oder Klasse der Elemente a {\displaystyle a} {\displaystyle a}, für die die Aussage A ( a ) {\displaystyle A(a)} {\displaystyle A(a)} wahr ist \mid U+007C
: {\displaystyle \colon } {\displaystyle \colon } { a : A ( a ) } {\displaystyle \{a\colon A(a)\}} {\displaystyle \{a\colon A(a)\}} \colon U+003A

Mengenoperationen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∩ {\displaystyle \cap } {\displaystyle \cap } A ∩ B {\displaystyle A\cap B} {\displaystyle A\cap B} Durchschnitt der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Schnittmenge \cap U+2229
⋂ {\displaystyle \bigcap } {\displaystyle \bigcap } ⋂ i = 1 n A i {\displaystyle \bigcap _{i=1}^{n}A_{i}} {\displaystyle \bigcap _{i=1}^{n}A_{i}}, ⋂ i ∈ I A i {\displaystyle \bigcap _{i\in I}A_{i}} {\displaystyle \bigcap _{i\in I}A_{i}} Durchschnitt aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n}

bzw. aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I}

\bigcap
∪ {\displaystyle \cup } {\displaystyle \cup } A ∪ B {\displaystyle A\cup B} {\displaystyle A\cup B} Vereinigung der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Vereinigungsmenge \cup U+222A
⋃ {\displaystyle \bigcup } {\displaystyle \bigcup } ⋃ i = 1 n A i {\displaystyle \bigcup _{i=1}^{n}A_{i}} {\displaystyle \bigcup _{i=1}^{n}A_{i}}, ⋃ i ∈ I A i {\displaystyle \bigcup _{i\in I}A_{i}} {\displaystyle \bigcup _{i\in I}A_{i}} Vereinigung aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n}

bzw. aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I}

\bigcup
∖ {\displaystyle \setminus } {\displaystyle \setminus } A ∖ B {\displaystyle A\setminus B} {\displaystyle A\setminus B} Differenz der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Differenzmenge \setminus U+2216
C {\displaystyle {}^{\mathsf {C}}} {\displaystyle {}^{\mathsf {C}}} A C {\displaystyle A^{\mathsf {C}}} {\displaystyle A^{\mathsf {C}}} Komplement der Menge A {\displaystyle A} {\displaystyle A} Komplement (Mengenlehre) ^\mathsf{C} U+2201
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} A ¯ {\displaystyle {\overline {A}}} {\displaystyle {\overline {A}}} \overline U+0305
△ {\displaystyle \bigtriangleup } {\displaystyle \bigtriangleup } A △ B {\displaystyle A\bigtriangleup B} {\displaystyle A\bigtriangleup B} symmetrische Differenz der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Symmetrische Differenz \bigtriangleup U+25B3
∪ ˙ {\displaystyle {\dot {\cup }}} {\displaystyle {\dot {\cup }}} A ∪ ˙ B {\displaystyle A\,{\dot {\cup }}\,B} {\displaystyle A\,{\dot {\cup }}\,B} Vereinigung disjunkter Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Disjunkte Vereinigung \,\dot\cup\, U+228D
⋃ ˙ {\displaystyle {\dot {\bigcup }}} {\displaystyle {\dot {\bigcup }}} ⋃ i = 1 ˙ n A i {\displaystyle {\dot {\bigcup _{i=1}}}^{n}A_{i}} {\displaystyle {\dot {\bigcup _{i=1}}}^{n}A_{i}}, ⋃ i ∈ I ˙ A i {\displaystyle {\dot {\bigcup _{i\in I}}}\,A_{i}} {\displaystyle {\dot {\bigcup _{i\in I}}}\,A_{i}} Vereinigung aller paarweise disjunkten Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n}

bzw. aller paarweise disjunkten Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I}

\dot{\bigcup...}
⊔ {\displaystyle \sqcup } {\displaystyle \sqcup } A ⊔ B {\displaystyle A\sqcup B} {\displaystyle A\sqcup B} Disjunkte Vereinigung der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} \sqcup U+2294
⨆ {\displaystyle \bigsqcup } {\displaystyle \bigsqcup } ⨆ i = 1 n A i {\displaystyle \bigsqcup _{i=1}^{n}A_{i}} {\displaystyle \bigsqcup _{i=1}^{n}A_{i}}, ⨆ i ∈ I A i {\displaystyle \bigsqcup _{i\in I}A_{i}} {\displaystyle \bigsqcup _{i\in I}A_{i}} Disjunkte Vereinigung aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n}

bzw. aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I}

\bigsqcup
× {\displaystyle \times } {\displaystyle \times } A × B {\displaystyle A\times B} {\displaystyle A\times B} kartesisches Produkt der Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Kartesisches Produkt \times U+2A2F
∏ {\displaystyle \prod } {\displaystyle \prod } ∏ i = 1 n A i {\displaystyle \prod _{i=1}^{n}A_{i}} {\displaystyle \prod _{i=1}^{n}A_{i}}, ∏ i ∈ I A i {\displaystyle \prod _{i\in I}A_{i}} {\displaystyle \prod _{i\in I}A_{i}} kartesisches Produkt aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n}

bzw. aller Mengen A i {\displaystyle A_{i}} {\displaystyle A_{i}} mit i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I}

\prod
P {\displaystyle {\mathcal {P}}} {\displaystyle {\mathcal {P}}} P ( A ) {\displaystyle {\mathcal {P}}(A)} {\displaystyle {\mathcal {P}}(A)} Potenzmenge der Menge A {\displaystyle A} {\displaystyle A} Potenzmenge \mathcal{P} U+1D4AB
P {\displaystyle {\mathfrak {P}}} {\displaystyle {\mathfrak {P}}} P ( A ) {\displaystyle {\mathfrak {P}}(A)} {\displaystyle {\mathfrak {P}}(A)} \mathfrak{P} U+1D513

Mengenrelationen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
= {\displaystyle =} {\displaystyle =} A = B {\displaystyle A=B} {\displaystyle A=B} A {\displaystyle A} {\displaystyle A} ist gleich B {\displaystyle B} {\displaystyle B} Menge (Mathematik) = U+003D
⊂ {\displaystyle \subset } {\displaystyle \subset } A ⊂ B {\displaystyle A\subset B} {\displaystyle A\subset B} A {\displaystyle A} {\displaystyle A} ist echte Teilmenge von B {\displaystyle B} {\displaystyle B} Teilmenge \subset U+2282
⊊ {\displaystyle \subsetneq } {\displaystyle \subsetneq } A ⊊ B {\displaystyle A\subsetneq B} {\displaystyle A\subsetneq B} \subsetneq U+228A
⊆ {\displaystyle \subseteq } {\displaystyle \subseteq } A ⊆ B {\displaystyle A\subseteq B} {\displaystyle A\subseteq B} A {\displaystyle A} {\displaystyle A} ist Teilmenge von B {\displaystyle B} {\displaystyle B} \subseteq U+2286
⊃ {\displaystyle \supset } {\displaystyle \supset } A ⊃ B {\displaystyle A\supset B} {\displaystyle A\supset B} A {\displaystyle A} {\displaystyle A} ist echte Obermenge von B {\displaystyle B} {\displaystyle B} Obermenge \supset U+2283
⊋ {\displaystyle \supsetneq } {\displaystyle \supsetneq } A ⊋ B {\displaystyle A\supsetneq B} {\displaystyle A\supsetneq B} \supsetneq U+228B
⊇ {\displaystyle \supseteq } {\displaystyle \supseteq } A ⊇ B {\displaystyle A\supseteq B} {\displaystyle A\supseteq B} A {\displaystyle A} {\displaystyle A} ist Obermenge von B {\displaystyle B} {\displaystyle B} \supseteq U+2287
∈ {\displaystyle \in } {\displaystyle \in } a ∈ A {\displaystyle a\in A} {\displaystyle a\in A} das Element a {\displaystyle a} {\displaystyle a} ist in der Menge A {\displaystyle A} {\displaystyle A} enthalten Element (Mathematik) \in U+2208
∋ {\displaystyle \ni } {\displaystyle \ni } A ∋ a {\displaystyle A\ni a} {\displaystyle A\ni a} \ni, \owns U+220B
∉ {\displaystyle \notin } {\displaystyle \notin } a ∉ A {\displaystyle a\notin A} {\displaystyle a\notin A} das Element a {\displaystyle a} {\displaystyle a} ist nicht in der Menge A {\displaystyle A} {\displaystyle A} enthalten \notin U+2209
∌ {\displaystyle \not \ni } {\displaystyle \not \ni } A ∌ a {\displaystyle A\not \ni a} {\displaystyle A\not \ni a} \not\ni U+220C

Hinweis: Die Symbole ⊂ {\displaystyle \subset } {\displaystyle \subset } und ⊃ {\displaystyle \supset } {\displaystyle \supset } werden nicht einheitlich verwendet und schließen häufig die Gleichheit der beiden Mengen nicht aus.

Siehe auch: Notationen der Teilmenge

Mächtigkeiten

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
|     | {\displaystyle |~~|} {\displaystyle |~~|} | A | {\displaystyle |A|} {\displaystyle |A|} Mächtigkeit (Kardinalität) einer Menge A {\displaystyle A} {\displaystyle A} Mächtigkeit (Mathematik) \vert U+007C
# {\displaystyle \#} {\displaystyle \#} # A {\displaystyle \#A} {\displaystyle \#A} \# U+0023
c {\displaystyle {\mathfrak {c}}} {\displaystyle {\mathfrak {c}}} Mächtigkeit des Kontinuums Kontinuum (Mathematik) \mathfrak{c} U+1D520
ℵ {\displaystyle \aleph } {\displaystyle \aleph } ℵ 0 {\displaystyle \aleph _{0}} {\displaystyle \aleph _{0}}, ℵ 1 {\displaystyle \aleph _{1}} {\displaystyle \aleph _{1}}, ... Kardinalzahlen Kardinalzahl (Mathematik) \aleph U+2135
ℶ {\displaystyle \beth } {\displaystyle \beth } ℶ 0 {\displaystyle \beth _{0}} {\displaystyle \beth _{0}}, ℶ 1 {\displaystyle \beth _{1}} {\displaystyle \beth _{1}}, ... Beth-Zahlen Beth-Funktion \beth U+2136

Zahlenmengen

[Bearbeiten | Quelltext bearbeiten]
Symbol Interpretation Artikel LaTeX Unicode
P {\displaystyle \mathbb {P} } {\displaystyle \mathbb {P} } Primzahlen Primzahl \mathbb{P} U+2119
N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} } natürliche Zahlen Natürliche Zahl \mathbb{N} U+2115
Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} } ganze Zahlen Ganze Zahl \mathbb{Z} U+2124
F {\displaystyle \mathbb {F} } {\displaystyle \mathbb {F} } endlicher Körper mit Primzahlcharakteristik Endlicher Körper \mathbb{F} U+1D53D
Q {\displaystyle \mathbb {Q} } {\displaystyle \mathbb {Q} } rationale Zahlen Rationale Zahl \mathbb{Q} U+211A
I {\displaystyle \mathbb {I} } {\displaystyle \mathbb {I} } irrationale Zahlen (Reelle) irrationale Zahl \mathbb{I} U+1D540
A {\displaystyle \mathbb {A} } {\displaystyle \mathbb {A} } algebraische Zahlen (Komplexe) algebraische Zahl \mathbb{A} U+1D538
T {\displaystyle \mathbb {T} } {\displaystyle \mathbb {T} } transzendente Zahlen Reelle transzendente Zahl \mathbb{T} U+1D54B
R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} } reelle Zahlen Reelle Zahl \mathbb{R} U+211D
∗ R {\displaystyle {}^{*}\mathbb {R} } {\displaystyle {}^{*}\mathbb {R} } hyperreelle Zahlen Hyperreelle Zahl {}^*\mathbb{R} U+211D
C {\displaystyle \mathbb {C} } {\displaystyle \mathbb {C} } komplexe Zahlen Komplexe Zahl \mathbb{C} U+2102
H {\displaystyle \mathbb {H} } {\displaystyle \mathbb {H} } Quaternionen Quaternion \mathbb{H} U+210D
O {\displaystyle \mathbb {O} } {\displaystyle \mathbb {O} } Oktonionen Oktonion \mathbb{O} U+1D546
S {\displaystyle \mathbb {S} } {\displaystyle \mathbb {S} } Sedenionen Sedenion \mathbb{S} U+1D54A
K {\displaystyle \mathbb {K} } {\displaystyle \mathbb {K} } K ∈ { R , C } {\displaystyle \mathbb {K} \in \{\mathbb {R} ,\mathbb {C} \}} {\displaystyle \mathbb {K} \in \{\mathbb {R} ,\mathbb {C} \}} Algebren \mathbb{K} U+1D542

Arithmetik

[Bearbeiten | Quelltext bearbeiten]

Rechenzeichen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
+ {\displaystyle +} {\displaystyle +} a + b {\displaystyle a+b} {\displaystyle a+b} a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} werden addiert Addition + U+002B
− {\displaystyle -} {\displaystyle -} a − b {\displaystyle a-b} {\displaystyle a-b} b {\displaystyle b} {\displaystyle b} wird von a {\displaystyle a} {\displaystyle a} subtrahiert Subtraktion - U+2212
⋅ {\displaystyle \cdot } {\displaystyle \cdot } a ⋅ b {\displaystyle a\cdot b} {\displaystyle a\cdot b} a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} werden multipliziert Multiplikation \cdot U+22C5
× {\displaystyle \times } {\displaystyle \times } a × b {\displaystyle a\times b} {\displaystyle a\times b} \times U+2A2F
: {\displaystyle :} {\displaystyle :} a : b {\displaystyle a:b} {\displaystyle a:b} a {\displaystyle a} {\displaystyle a} wird durch b {\displaystyle b} {\displaystyle b} dividiert Division (Mathematik) : U+003A
/ {\displaystyle /} {\displaystyle /} a / b {\displaystyle a/b} {\displaystyle a/b} / U+2215
÷ {\displaystyle \div } {\displaystyle \div } a ÷ b {\displaystyle a\div b} {\displaystyle a\div b} \div U+00F7
        {\displaystyle {\frac {~~}{~~}}} {\displaystyle {\frac {~~}{~~}}} a b {\displaystyle {\tfrac {a}{b}}} {\displaystyle {\tfrac {a}{b}}} \frac U+2044
− {\displaystyle -} {\displaystyle -} − a {\displaystyle -a} {\displaystyle -a} negative Zahl a {\displaystyle a} {\displaystyle a} oder additiv Inverses von a {\displaystyle a} {\displaystyle a} Unäres Minus - U+2212
± {\displaystyle \pm } {\displaystyle \pm } ± a {\displaystyle \pm a} {\displaystyle \pm a} plus oder minus a {\displaystyle a} {\displaystyle a} Plusminuszeichen \pm U+00B1
∓ {\displaystyle \mp } {\displaystyle \mp } ∓ a {\displaystyle \mp a} {\displaystyle \mp a} minus oder plus a {\displaystyle a} {\displaystyle a} \mp U+2213
(   ) {\displaystyle (~)} {\displaystyle (~)} ( a ) {\displaystyle (a)} {\displaystyle (a)} der Term a {\displaystyle a} {\displaystyle a} wird zuerst ausgewertet Klammer (Zeichen) ( ) U+0028/9
[   ] {\displaystyle [~]} {\displaystyle [~]} [ a ] {\displaystyle [a]} {\displaystyle [a]} [ ] U+005B/D

Elementare Funktionen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
% {\displaystyle \%} {\displaystyle \%} p % {\displaystyle p\,\%} {\displaystyle p\,\%} p {\displaystyle p} {\displaystyle p} Prozent Prozent \% U+0025
|     | {\displaystyle |~~|} {\displaystyle |~~|} | x | {\displaystyle |x|} {\displaystyle |x|} Betrag von x {\displaystyle x} {\displaystyle x} Betragsfunktion \vert U+007C
[     ] {\displaystyle \left[~~\right]} {\displaystyle \left[~~\right]} [ x ] {\displaystyle \left[x\right]} {\displaystyle \left[x\right]} größte ganze Zahl kleiner oder gleich x {\displaystyle x} {\displaystyle x} (veraltete Schreibweise)[1] Gaußklammer [ ] U+005B/D
⌊     ⌋ {\displaystyle \lfloor ~~\rfloor } {\displaystyle \lfloor ~~\rfloor } ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } {\displaystyle \lfloor x\rfloor } größte ganze Zahl kleiner oder gleich x {\displaystyle x} {\displaystyle x} \lfloor \rfloor U+230A/B
⌈     ⌉ {\displaystyle \lceil ~~\rceil } {\displaystyle \lceil ~~\rceil } ⌈ x ⌉ {\displaystyle \lceil x\rceil } {\displaystyle \lceil x\rceil } kleinste ganze Zahl größer oder gleich x {\displaystyle x} {\displaystyle x} \lceil \rceil U+2308/9
{\displaystyle {\sqrt {\,}}} {\displaystyle {\sqrt {\,}}} x {\displaystyle {\sqrt {x}}} {\displaystyle {\sqrt {x}}} Wurzel aus x {\displaystyle x} {\displaystyle x} Wurzel (Mathematik) \sqrt U+221A
x n {\displaystyle {\sqrt[{n}]{x}}} {\displaystyle {\sqrt[{n}]{x}}} n {\displaystyle n} {\displaystyle n}-te Wurzel aus x {\displaystyle x} {\displaystyle x}

Anmerkung: Die Potenzfunktion wird nicht durch ein eigenes Symbol, sondern auch durch Hochstellung des Exponenten dargestellt.

Komplexe Zahlen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
i {\displaystyle \mathrm {i} } {\displaystyle \mathrm {i} } a + b i {\displaystyle a+b\mathrm {i} } {\displaystyle a+b\mathrm {i} } imaginäre Einheit Imaginäre Zahl \mathrm{i} U+0069
ℜ {\displaystyle \Re } {\displaystyle \Re } ℜ ( z ) {\displaystyle \Re (z)} {\displaystyle \Re (z)} Realteil der komplexen Zahl z {\displaystyle z} {\displaystyle z} Komplexe Zahl \Re U+211C
ℑ {\displaystyle \Im } {\displaystyle \Im } ℑ ( z ) {\displaystyle \Im (z)} {\displaystyle \Im (z)} Imaginärteil der komplexen Zahl z {\displaystyle z} {\displaystyle z} \Im U+2111
  ¯ {\displaystyle {\bar {~}}} {\displaystyle {\bar {~}}} z ¯ {\displaystyle {\bar {z}}} {\displaystyle {\bar {z}}} Konjugiert komplexe Zahl der Zahl z {\displaystyle z} {\displaystyle z} Komplexe Konjugation \bar U+0305
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} z ∗ {\displaystyle z^{\ast }} {\displaystyle z^{\ast }} ^\ast U+002A

Anmerkung: Zur Bezeichnung des Real- und Imaginärteils einer komplexen Zahl sind vor allem die Abkürzungen Re {\displaystyle \operatorname {Re} } {\displaystyle \operatorname {Re} } und Im {\displaystyle \operatorname {Im} } {\displaystyle \operatorname {Im} } gebräuchlich.

Gleichheitszeichen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
= {\displaystyle =} {\displaystyle =} a = b {\displaystyle a=b} {\displaystyle a=b} a {\displaystyle a} {\displaystyle a} ist gleich b {\displaystyle b} {\displaystyle b} Gleichung = U+003D
≠ {\displaystyle \neq } {\displaystyle \neq } a ≠ b {\displaystyle a\neq b} {\displaystyle a\neq b} a {\displaystyle a} {\displaystyle a} ist nicht gleich b {\displaystyle b} {\displaystyle b} Ungleichung \neq U+2260
≡ {\displaystyle \equiv } {\displaystyle \equiv } a ≡ b {\displaystyle a\equiv b} {\displaystyle a\equiv b} a {\displaystyle a} {\displaystyle a} ist identisch mit b {\displaystyle b} {\displaystyle b} Identitätsgleichung \equiv U+2261
≈ {\displaystyle \approx } {\displaystyle \approx } a ≈ b {\displaystyle a\approx b} {\displaystyle a\approx b} a {\displaystyle a} {\displaystyle a} ist ungefähr gleich b {\displaystyle b} {\displaystyle b} Rundung \approx U+2248
∼ {\displaystyle \sim } {\displaystyle \sim } a ∼ b {\displaystyle a\sim b} {\displaystyle a\sim b} a {\displaystyle a} {\displaystyle a} ist proportional zu b {\displaystyle b} {\displaystyle b} Proportionalität \sim U+223C
∝ {\displaystyle \propto } {\displaystyle \propto } a ∝ b {\displaystyle a\propto b} {\displaystyle a\propto b} \propto U+221D
= ^ {\displaystyle {\widehat {=}}} {\displaystyle {\widehat {=}}} a = ^ b {\displaystyle a\,{\widehat {=}}\,b} {\displaystyle a\,{\widehat {=}}\,b} a {\displaystyle a} {\displaystyle a} entspricht b {\displaystyle b} {\displaystyle b} Entspricht-Zeichen \widehat{=} U+2259
∼ {\displaystyle \sim } {\displaystyle \sim } a ∼ b {\displaystyle a\sim b} {\displaystyle a\sim b} a {\displaystyle a} {\displaystyle a} wird genauso geschätzt wie b {\displaystyle b} {\displaystyle b} Präferenzrelation \sim -
≃ {\displaystyle \simeq } {\displaystyle \simeq } a ≃ b {\displaystyle a\simeq b} {\displaystyle a\simeq b} a {\displaystyle a} {\displaystyle a} ist asymptotisch gleich b {\displaystyle b} {\displaystyle b} \simeq U+2243
Siehe auch: Das Gleichheitszeichen und seine Abwandlungen

Vergleichszeichen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
< {\displaystyle <} {\displaystyle <} a < b {\displaystyle a<b} {\displaystyle a<b} a {\displaystyle a} {\displaystyle a} ist kleiner als b {\displaystyle b} {\displaystyle b} Vergleich (Zahlen) < U+003C
> {\displaystyle >} {\displaystyle >} a > b {\displaystyle a>b} {\displaystyle a>b} a {\displaystyle a} {\displaystyle a} ist größer als b {\displaystyle b} {\displaystyle b} > U+003E
≤ {\displaystyle \leq } {\displaystyle \leq } a ≤ b {\displaystyle a\leq b} {\displaystyle a\leq b} a {\displaystyle a} {\displaystyle a} ist kleiner als b {\displaystyle b} {\displaystyle b} oder gleich b {\displaystyle b} {\displaystyle b} \le, \leq U+2264
≦ {\displaystyle \leqq } {\displaystyle \leqq } a ≦ b {\displaystyle a\leqq b} {\displaystyle a\leqq b} \leqq U+2266
≥ {\displaystyle \geq } {\displaystyle \geq } a ≥ b {\displaystyle a\geq b} {\displaystyle a\geq b} a {\displaystyle a} {\displaystyle a} ist größer als b {\displaystyle b} {\displaystyle b} oder gleich b {\displaystyle b} {\displaystyle b} \ge, \geq U+2265
≧ {\displaystyle \geqq } {\displaystyle \geqq } a ≧ b {\displaystyle a\geqq b} {\displaystyle a\geqq b} \geqq U+2267
≪ {\displaystyle \ll } {\displaystyle \ll } a ≪ b {\displaystyle a\ll b} {\displaystyle a\ll b} a {\displaystyle a} {\displaystyle a} ist viel kleiner als b {\displaystyle b} {\displaystyle b} \ll U+226A
≫ {\displaystyle \gg } {\displaystyle \gg } a ≫ b {\displaystyle a\gg b} {\displaystyle a\gg b} a {\displaystyle a} {\displaystyle a} ist viel größer als b {\displaystyle b} {\displaystyle b} \gg U+226B
⋘ {\displaystyle \lll } {\displaystyle \lll } a ⋘ b {\displaystyle a\lll b} {\displaystyle a\lll b} a {\displaystyle a} {\displaystyle a} ist sehr viel kleiner als b {\displaystyle b} {\displaystyle b} \lll U+22D8
⋙ {\displaystyle \ggg } {\displaystyle \ggg } a ⋙ b {\displaystyle a\ggg b} {\displaystyle a\ggg b} a {\displaystyle a} {\displaystyle a} ist sehr viel größer als b {\displaystyle b} {\displaystyle b} \ggg U+22D9
≶ {\displaystyle \lessgtr } {\displaystyle \lessgtr } a ≶ b {\displaystyle a\lessgtr b} {\displaystyle a\lessgtr b} a {\displaystyle a} {\displaystyle a} ist kleiner oder größer als b {\displaystyle b} {\displaystyle b} \lessgtr U+2276
≷ {\displaystyle \gtrless } {\displaystyle \gtrless } a ≷ b {\displaystyle a\gtrless b} {\displaystyle a\gtrless b} a {\displaystyle a} {\displaystyle a} ist größer oder kleiner als b {\displaystyle b} {\displaystyle b} \gtrless U+2277
≺ {\displaystyle \prec } {\displaystyle \prec } a ≺ b {\displaystyle a\prec b} {\displaystyle a\prec b} b {\displaystyle b} {\displaystyle b} wird gegenüber a {\displaystyle a} {\displaystyle a} strikt vorgezogen Präferenzrelation \prec U+227A
≻ {\displaystyle \succ } {\displaystyle \succ } a ≻ b {\displaystyle a\succ b} {\displaystyle a\succ b} a {\displaystyle a} {\displaystyle a} wird gegenüber b {\displaystyle b} {\displaystyle b} strikt vorgezogen \succ U+227B
≼ {\displaystyle \preccurlyeq } {\displaystyle \preccurlyeq } a ≼ b {\displaystyle a\preccurlyeq b} {\displaystyle a\preccurlyeq b} b {\displaystyle b} {\displaystyle b} wird a {\displaystyle a} {\displaystyle a} schwach vorgezogen bzw. b {\displaystyle b} {\displaystyle b} ist mindestens so gut wie a {\displaystyle a} {\displaystyle a} \preccurlyeq U+227C
≽ {\displaystyle \succcurlyeq } {\displaystyle \succcurlyeq } a ≽ b {\displaystyle a\succcurlyeq b} {\displaystyle a\succcurlyeq b} a {\displaystyle a} {\displaystyle a} wird b {\displaystyle b} {\displaystyle b} schwach vorgezogen bzw. a {\displaystyle a} {\displaystyle a} ist mindestens so gut wie b {\displaystyle b} {\displaystyle b} \succcurlyeq U+227D
Siehe auch: Liste der Vergleichszeichen

Teilbarkeit

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∣ {\displaystyle \mid } {\displaystyle \mid } a ∣ b {\displaystyle a\mid b} {\displaystyle a\mid b} a {\displaystyle a} {\displaystyle a} teilt b {\displaystyle b} {\displaystyle b} Teilbarkeit \mid U+2223
∥ {\displaystyle \parallel } {\displaystyle \parallel } a ∥ b {\displaystyle a\parallel b} {\displaystyle a\parallel b} a {\displaystyle a} {\displaystyle a} teilt b {\displaystyle b} {\displaystyle b} exakt \parallel U+2225
∤ {\displaystyle \nmid } {\displaystyle \nmid } a ∤ b {\displaystyle a\nmid b} {\displaystyle a\nmid b} a {\displaystyle a} {\displaystyle a} teilt b {\displaystyle b} {\displaystyle b} nicht \nmid U+2224
⊥ {\displaystyle \perp } {\displaystyle \perp } a ⊥ b {\displaystyle a\perp b} {\displaystyle a\perp b} a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} sind teilerfremd Teilerfremdheit \perp U+22A5
⊓ {\displaystyle \sqcap } {\displaystyle \sqcap } a ⊓ b {\displaystyle a\sqcap b} {\displaystyle a\sqcap b} größter gemeinsamer Teiler von a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} Größter gemeinsamer Teiler \sqcap U+2293
∧ {\displaystyle \wedge } {\displaystyle \wedge } a ∧ b {\displaystyle a\wedge b} {\displaystyle a\wedge b} \wedge U+2227
⊔ {\displaystyle \sqcup } {\displaystyle \sqcup } a ⊔ b {\displaystyle a\sqcup b} {\displaystyle a\sqcup b} kleinstes gemeinsames Vielfaches von a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} Kleinstes gemeinsames Vielfaches \sqcup U+2294
∨ {\displaystyle \vee } {\displaystyle \vee } a ∨ b {\displaystyle a\vee b} {\displaystyle a\vee b} \vee U+2228
≡ {\displaystyle \equiv } {\displaystyle \equiv } a ≡ b mod m {\displaystyle a\equiv b{\bmod {m}}} {\displaystyle a\equiv b{\bmod {m}}} a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} sind kongruent modulo m {\displaystyle m} {\displaystyle m} Kongruenz (Zahlentheorie) \equiv U+2261

Mathematische Konstanten

[Bearbeiten | Quelltext bearbeiten]
Symbol Interpretation Artikel LaTeX Unicode
Φ {\displaystyle \Phi } {\displaystyle \Phi } goldener Schnitt Goldener Schnitt \Phi U+03A6
π {\displaystyle \pi } {\displaystyle \pi } Kreiszahl Kreiszahl \pi U+03C0
e {\displaystyle \mathrm {e} } {\displaystyle \mathrm {e} } eulersche Zahl Eulersche Zahl \mathrm{e} U+0065

Siehe auch: Mathematische Konstante für Symbole weiterer mathematischer Konstanten.

Algebra

[Bearbeiten | Quelltext bearbeiten]

Relationen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∘ {\displaystyle \circ } {\displaystyle \circ } R ∘ S {\displaystyle R\circ S} {\displaystyle R\circ S} Komposition der Relationen R {\displaystyle R} {\displaystyle R} und S {\displaystyle S} {\displaystyle S} Komposition (Mathematik) \circ U+2218
a ∘ b {\displaystyle a\circ b} {\displaystyle a\circ b} Verknüpfung der Elemente a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} (allgemein) Verknüpfung (Mathematik)
∙ {\displaystyle \bullet } {\displaystyle \bullet } a ∙ b {\displaystyle a\bullet b} {\displaystyle a\bullet b} \bullet U+2219
∗ {\displaystyle \ast } {\displaystyle \ast } a ∗ b {\displaystyle a\ast b} {\displaystyle a\ast b} \ast U+2217
≤ {\displaystyle \leq } {\displaystyle \leq } a ≤ b {\displaystyle a\leq b} {\displaystyle a\leq b} Ordnungsrelation zwischen den Elementen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} Ordnungsrelation \leq U+2264
≺ {\displaystyle \prec } {\displaystyle \prec } a ≺ b {\displaystyle a\prec b} {\displaystyle a\prec b} das Element a {\displaystyle a} {\displaystyle a} ist Vorgänger des Elements b {\displaystyle b} {\displaystyle b} Nachfolger (Mathematik) \prec U+227A
≻ {\displaystyle \succ } {\displaystyle \succ } a ≻ b {\displaystyle a\succ b} {\displaystyle a\succ b} das Element a {\displaystyle a} {\displaystyle a} ist Nachfolger des Elements b {\displaystyle b} {\displaystyle b} \succ U+227B
∼ {\displaystyle \sim } {\displaystyle \sim } a ∼ b {\displaystyle a\sim b} {\displaystyle a\sim b} Äquivalenzrelation zwischen den Elementen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} Äquivalenzrelation \sim U+223C
[     ] {\displaystyle [~~]} {\displaystyle [~~]} [ a ] {\displaystyle [a]} {\displaystyle [a]} Äquivalenzklasse des Elements a {\displaystyle a} {\displaystyle a} Äquivalenzklasse [ ] U+005B/D
/ {\displaystyle /} {\displaystyle /} M / ∼ {\displaystyle M/\sim } {\displaystyle M/\sim } Faktormenge der Menge M {\displaystyle M} {\displaystyle M} nach der Äquivalenzrelation ∼ {\displaystyle \sim } {\displaystyle \sim } Faktormenge (Mathematik) / U+002F
− 1 {\displaystyle {}^{-1}} {\displaystyle {}^{-1}} R − 1 {\displaystyle R^{-1}} {\displaystyle R^{-1}} Umkehrrelation der Relation R {\displaystyle R} {\displaystyle R} Umkehrrelation -1 U+207B
+ {\displaystyle {}^{+}} {\displaystyle {}^{+}} R + {\displaystyle R^{+}} {\displaystyle R^{+}} Transitive Hülle der Relation R {\displaystyle R} {\displaystyle R} Transitive Hülle (Relation) + U+002B
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} R ∗ {\displaystyle R^{\ast }} {\displaystyle R^{\ast }} Reflexiv-transitive Hülle der Relation R {\displaystyle R} {\displaystyle R} \ast U+002A

Gruppentheorie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
≃ {\displaystyle \simeq } {\displaystyle \simeq } G ≃ H {\displaystyle G\simeq H} {\displaystyle G\simeq H} die Gruppen G {\displaystyle G} {\displaystyle G} und H {\displaystyle H} {\displaystyle H} sind isomorph Gruppenisomorphismus \simeq U+2243
≅ {\displaystyle \cong } {\displaystyle \cong } G ≅ H {\displaystyle G\cong H} {\displaystyle G\cong H} \cong U+2245
× {\displaystyle \times } {\displaystyle \times } G × H {\displaystyle G\times H} {\displaystyle G\times H} Direktes Produkt der Gruppen G {\displaystyle G} {\displaystyle G} und H {\displaystyle H} {\displaystyle H} Direktes Produkt \times U+2A2F
⋊ {\displaystyle \rtimes } {\displaystyle \rtimes } G ⋊ H {\displaystyle G\rtimes H} {\displaystyle G\rtimes H} Semidirektes Produkt der Gruppen G {\displaystyle G} {\displaystyle G} und H {\displaystyle H} {\displaystyle H} Semidirektes Produkt \rtimes U+22CA
≀ {\displaystyle \wr } {\displaystyle \wr } G ≀ H {\displaystyle G\,\wr \,H} {\displaystyle G\,\wr \,H} Kranzprodukt der Gruppen G {\displaystyle G} {\displaystyle G} und H {\displaystyle H} {\displaystyle H} Kranzprodukt \wr U+2240
≤ {\displaystyle \leq } {\displaystyle \leq } U ≤ G {\displaystyle U\leq G} {\displaystyle U\leq G} U {\displaystyle U} {\displaystyle U} ist eine Untergruppe der Gruppe G {\displaystyle G} {\displaystyle G} Untergruppe \leq U+2264
< {\displaystyle <} {\displaystyle <} U < G {\displaystyle U<G} {\displaystyle U<G} U {\displaystyle U} {\displaystyle U} ist eine echte Untergruppe der Gruppe G {\displaystyle G} {\displaystyle G} \lt U+003C
⊲ {\displaystyle \vartriangleleft } {\displaystyle \vartriangleleft } N ⊲ G {\displaystyle N\vartriangleleft G} {\displaystyle N\vartriangleleft G} N {\displaystyle N} {\displaystyle N} ist ein Normalteiler der Gruppe G {\displaystyle G} {\displaystyle G} Normalteiler \vartriangleleft U+22B2
⊴ {\displaystyle \trianglelefteq } {\displaystyle \trianglelefteq } N ⊴ G {\displaystyle N\trianglelefteq G} {\displaystyle N\trianglelefteq G} \trianglelefteq
/ {\displaystyle /} {\displaystyle /} G / N {\displaystyle G/N} {\displaystyle G/N} Faktorgruppe der Gruppe G {\displaystyle G} {\displaystyle G} nach dem Normalteiler N {\displaystyle N} {\displaystyle N} Faktorgruppe / U+002F
: {\displaystyle :} {\displaystyle :} ( G : U ) {\displaystyle (G:U)} {\displaystyle (G:U)} Index der Untergruppe U {\displaystyle U} {\displaystyle U} in der Gruppe G {\displaystyle G} {\displaystyle G} Index (Gruppentheorie) : U+003A
⟨     ⟩ {\displaystyle \langle ~~\rangle } {\displaystyle \langle ~~\rangle } ⟨ E ⟩ {\displaystyle \langle E\rangle } {\displaystyle \langle E\rangle } Untergruppe, die durch die Menge E {\displaystyle E} {\displaystyle E} erzeugt wird Erzeuger (Algebra) \langle \rangle U+27E8/9
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( g , h ) {\displaystyle (g,h)} {\displaystyle (g,h)} Konjugation der Gruppenelemente g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} Konjugation (Gruppentheorie) ( ) U+0028 U+0029
[     ] {\displaystyle [~~]} {\displaystyle [~~]} [ g , h ] {\displaystyle [g,h]} {\displaystyle [g,h]} Kommutator der Gruppenelemente g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} Kommutator (Mathematik) [ ] U+005B/D

Ringtheorie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} R ∗ {\displaystyle R^{\ast }} {\displaystyle R^{\ast }} Einheitengruppe des Rings R {\displaystyle R} {\displaystyle R} Einheitengruppe ^\ast U+2217
× {\displaystyle {}^{\times }} {\displaystyle {}^{\times }} R × {\displaystyle R^{\times }} {\displaystyle R^{\times }} ^\times U+2A2F
⊲ {\displaystyle \vartriangleleft } {\displaystyle \vartriangleleft } I ⊲ R {\displaystyle I\vartriangleleft R} {\displaystyle I\vartriangleleft R} I {\displaystyle I} {\displaystyle I} ist ein Ideal des Rings R {\displaystyle R} {\displaystyle R} Ideal (Ringtheorie) \vartriangleleft U+22B2
/ {\displaystyle /} {\displaystyle /} R / I {\displaystyle R/I} {\displaystyle R/I} Faktorring des Rings R {\displaystyle R} {\displaystyle R} nach dem Ideal I {\displaystyle I} {\displaystyle I} Faktorring / U+002F
[     ] {\displaystyle [~~]} {\displaystyle [~~]} R [ X ] {\displaystyle R[X]} {\displaystyle R[X]} Polynomring über dem Ring R {\displaystyle R} {\displaystyle R} mit der Variablen X {\displaystyle X} {\displaystyle X} Polynomring [ ] U+005B/D

Körpertheorie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
/ {\displaystyle /} {\displaystyle /} L / K {\displaystyle L/K} {\displaystyle L/K} Erweiterung des Körpers L {\displaystyle L} {\displaystyle L} über den Körper K {\displaystyle K} {\displaystyle K} Körpererweiterung / U+002F
∣ {\displaystyle \mid } {\displaystyle \mid } L ∣ K {\displaystyle L\mid K} {\displaystyle L\mid K} \mid U+007C
: {\displaystyle :} {\displaystyle :} L : K {\displaystyle L:K} {\displaystyle L:K} : U+003A
[ L : K ] {\displaystyle [L:K]} {\displaystyle [L:K]} Grad der Körpererweiterung L {\displaystyle L} {\displaystyle L} über K {\displaystyle K} {\displaystyle K} Erweiterungsgrad
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} K ¯ {\displaystyle {\overline {K}}} {\displaystyle {\overline {K}}} Algebraischer Abschluss des Körpers K {\displaystyle K} {\displaystyle K} Algebraischer Abschluss \overline U+0305
K {\displaystyle \mathbb {K} } {\displaystyle \mathbb {K} } Körper der reellen oder komplexen Zahlen Körper (Algebra) \mathbb{K} U+1D542
F {\displaystyle \mathbb {F} } {\displaystyle \mathbb {F} } endlicher Körper Endlicher Körper \mathbb{F} U+1D53D

Lineare Algebra und Geometrie

[Bearbeiten | Quelltext bearbeiten]

Elementargeometrie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
[     ] {\displaystyle [~~]} {\displaystyle [~~]} [ A B ] {\displaystyle [AB]} {\displaystyle [AB]} Strecke zwischen den Punkten A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Strecke (Geometrie) [ ] U+005B/D
|     | {\displaystyle |~~|} {\displaystyle |~~|} | A B | {\displaystyle |AB|} {\displaystyle |AB|} Länge der Strecke zwischen den Punkten A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} \vert U+007C
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} A B ¯ {\displaystyle {\overline {AB}}} {\displaystyle {\overline {AB}}} \overline U+0305
    → {\displaystyle {\overrightarrow {~~}}} {\displaystyle {\overrightarrow {~~}}} A B → {\displaystyle {\overrightarrow {AB}}} {\displaystyle {\overrightarrow {AB}}} Verbindungsvektor der Punkte A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Vektor \vec U+20D7
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( A B ) {\displaystyle (AB)} {\displaystyle (AB)} Verbindungsgerade der Punkte A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Verbindungsgerade ( ) U+0028 U+0029
∠ {\displaystyle \angle } {\displaystyle \angle } ∠ A B C {\displaystyle \angle ABC} {\displaystyle \angle ABC} Winkel mit den Schenkeln B A {\displaystyle BA} {\displaystyle BA} und B C {\displaystyle BC} {\displaystyle BC} Winkel \angle U+2220
△ {\displaystyle \triangle } {\displaystyle \triangle } △ A B C {\displaystyle \triangle ABC} {\displaystyle \triangle ABC} Dreieck mit den Eckpunkten A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} und C {\displaystyle C} {\displaystyle C} Dreieck \triangle U+25B3
◻ {\displaystyle \square } {\displaystyle \square } ◻ A B C D {\displaystyle \square {\mathit {ABCD}}} {\displaystyle \square {\mathit {ABCD}}} Viereck mit den Eckpunkten A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B}, C {\displaystyle C} {\displaystyle C} und D {\displaystyle D} {\displaystyle D} Viereck \square U+25A1
∥ {\displaystyle \parallel } {\displaystyle \parallel } g ∥ h {\displaystyle g\parallel h} {\displaystyle g\parallel h} die Geraden g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} sind parallel zueinander Parallelität (Geometrie) \parallel U+2225
∦ {\displaystyle \nparallel } {\displaystyle \nparallel } g ∦ h {\displaystyle g\nparallel h} {\displaystyle g\nparallel h} die Geraden g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} sind nicht parallel zueinander \nparallel U+2226
⊥ {\displaystyle \perp } {\displaystyle \perp } g ⊥ h {\displaystyle g\perp h} {\displaystyle g\perp h} die Geraden g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} sind orthogonal zueinander Orthogonalität \perp U+22A5

Vektoren und Matrizen

[Bearbeiten | Quelltext bearbeiten]
Symbol Interpretation Artikel LaTeX
( v 1 , … , v n ) {\displaystyle {\begin{pmatrix}v_{1},\ldots ,v_{n}\end{pmatrix}}} {\displaystyle {\begin{pmatrix}v_{1},\ldots ,v_{n}\end{pmatrix}}} Zeilenvektor bestehend aus den Elementen v 1 {\displaystyle v_{1}} {\displaystyle v_{1}} bis v n {\displaystyle v_{n}} {\displaystyle v_{n}} Vektor \begin{pmatrix}
...
\end{pmatrix}

oder

\left(
\begin{array}{...}
...
\end{array}
\right)
( v 1 ⋮ v m ) {\displaystyle {\begin{pmatrix}v_{1}\\\vdots \\v_{m}\end{pmatrix}}} {\displaystyle {\begin{pmatrix}v_{1}\\\vdots \\v_{m}\end{pmatrix}}} Spaltenvektor bestehend aus den Elementen v 1 {\displaystyle v_{1}} {\displaystyle v_{1}} bis v m {\displaystyle v_{m}} {\displaystyle v_{m}}
( a 11 … a 1 n ⋮ ⋱ ⋮ a m 1 … a m n ) {\displaystyle {\begin{pmatrix}a_{11}&\!\ldots \!&a_{1n}\\\vdots &\!\ddots \!&\vdots \\a_{m1}&\!\ldots \!&a_{mn}\end{pmatrix}}} {\displaystyle {\begin{pmatrix}a_{11}&\!\ldots \!&a_{1n}\\\vdots &\!\ddots \!&\vdots \\a_{m1}&\!\ldots \!&a_{mn}\end{pmatrix}}} Matrix bestehend aus den Elementen a 11 {\displaystyle a_{11}} {\displaystyle a_{11}} bis a m n {\displaystyle a_{mn}} {\displaystyle a_{mn}} Matrix (Mathematik)

Vektorrechnung

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
⋅ {\displaystyle \cdot } {\displaystyle \cdot } v ⋅ w {\displaystyle v\cdot w} {\displaystyle v\cdot w} Skalarprodukt der Vektoren v {\displaystyle v} {\displaystyle v} und w {\displaystyle w} {\displaystyle w} Skalarprodukt \cdot U+22C5
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( v , w ) {\displaystyle (v,w)} {\displaystyle (v,w)} ( ) U+0028 U+0029
⟨     ⟩ {\displaystyle \langle ~~\rangle } {\displaystyle \langle ~~\rangle } ⟨ v , w ⟩ {\displaystyle \langle v,w\rangle } {\displaystyle \langle v,w\rangle }
⟨ v | w ⟩ {\displaystyle \langle v\,|\,w\rangle } {\displaystyle \langle v\,|\,w\rangle }
\langle \rangle U+27E8 U+27E9
× {\displaystyle \times } {\displaystyle \times } v × w {\displaystyle v\times w} {\displaystyle v\times w} Kreuzprodukt (Vektorprodukt) der Vektoren v {\displaystyle v} {\displaystyle v} und w {\displaystyle w} {\displaystyle w} Kreuzprodukt \times U+2A2F
[     ] {\displaystyle [~~]} {\displaystyle [~~]} [ v , w ] {\displaystyle [v,w]} {\displaystyle [v,w]} [ ] U+005B/D
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( u , v , w ) {\displaystyle (u,v,w)} {\displaystyle (u,v,w)} Spatprodukt der Vektoren u {\displaystyle u} {\displaystyle u}, v {\displaystyle v} {\displaystyle v} und w {\displaystyle w} {\displaystyle w} Spatprodukt ( ) U+0028 U+0029
⊗ {\displaystyle \otimes } {\displaystyle \otimes } v ⊗ w {\displaystyle v\otimes w} {\displaystyle v\otimes w} dyadisches Produkt der Vektoren v {\displaystyle v} {\displaystyle v} und w {\displaystyle w} {\displaystyle w} Dyadisches Produkt \otimes U+2297
∧ {\displaystyle \wedge } {\displaystyle \wedge } v ∧ w {\displaystyle v\wedge w} {\displaystyle v\wedge w} Dachprodukt der Vektoren v {\displaystyle v} {\displaystyle v} und w {\displaystyle w} {\displaystyle w} Dachprodukt \wedge U+2227
|     | {\displaystyle |~~|} {\displaystyle |~~|} | v | {\displaystyle |v|} {\displaystyle |v|} Betrag des Vektors v {\displaystyle v} {\displaystyle v} Vektor \vert U+007C
‖     ‖ {\displaystyle \|~~\|} {\displaystyle \|~~\|} ‖ v ‖ {\displaystyle \|v\|} {\displaystyle \|v\|} Norm des Vektors v {\displaystyle v} {\displaystyle v} Vektornorm \Vert, \| U+2016
  ^ {\displaystyle {\hat {~}}} {\displaystyle {\hat {~}}} v ^ {\displaystyle {\hat {v}}} {\displaystyle {\hat {v}}} Einheitsvektor zum Vektor v {\displaystyle v} {\displaystyle v} Einheitsvektor \hat U+0302

Matrizenrechnung

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
⋅ {\displaystyle \cdot } {\displaystyle \cdot } A ⋅ B {\displaystyle A\cdot B} {\displaystyle A\cdot B} Produkt der Matrizen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Matrizenmultiplikation \cdot U+22C5
: {\displaystyle :} {\displaystyle :} A : B {\displaystyle A:B} {\displaystyle A:B} Frobenius-Skalarprodukt der Matrizen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} (in der Physik) Frobenius-Skalarprodukt : U+003A
∘ {\displaystyle \circ } {\displaystyle \circ } A ∘ B {\displaystyle A\circ B} {\displaystyle A\circ B} Hadamard-Produkt der Matrizen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Hadamard-Produkt \circ U+2218
⊗ {\displaystyle \otimes } {\displaystyle \otimes } A ⊗ B {\displaystyle A\otimes B} {\displaystyle A\otimes B} Kronecker-Produkt der Matrizen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} Kronecker-Produkt \otimes U+2297
T {\displaystyle {}^{\mathsf {T}}} {\displaystyle {}^{\mathsf {T}}} A T {\displaystyle A^{\mathsf {T}}} {\displaystyle A^{\mathsf {T}}} transponierte Matrix der Matrix A {\displaystyle A} {\displaystyle A} Transponierte Matrix ...^\mathsf{T} U+0054
H {\displaystyle {}^{\mathsf {H}}} {\displaystyle {}^{\mathsf {H}}} A H {\displaystyle A^{\mathsf {H}}} {\displaystyle A^{\mathsf {H}}} adjungierte Matrix der Matrix A {\displaystyle A} {\displaystyle A} Adjungierte Matrix ...^\mathsf{H} U+0048
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} A ∗ {\displaystyle A^{\ast }} {\displaystyle A^{\ast }} ...^\ast U+002A
† {\displaystyle {}^{\dagger }} {\displaystyle {}^{\dagger }} A † {\displaystyle A^{\dagger }} {\displaystyle A^{\dagger }} ...^\dagger U+2020
− 1 {\displaystyle {}^{-1}} {\displaystyle {}^{-1}} A − 1 {\displaystyle A^{-1}} {\displaystyle A^{-1}} inverse Matrix der Matrix A {\displaystyle A} {\displaystyle A} Inverse Matrix ...^{-1} U+207B
+ {\displaystyle {}^{+}} {\displaystyle {}^{+}} A + {\displaystyle A^{+}} {\displaystyle A^{+}} Moore-Penrose-Inverse der Matrix A {\displaystyle A} {\displaystyle A} Pseudoinverse ...^+ U+002B
|     | {\displaystyle |~~|} {\displaystyle |~~|} | A | {\displaystyle |A|} {\displaystyle |A|} Determinante der Matrix A {\displaystyle A} {\displaystyle A} Determinante (Mathematik) \vert U+007C
det {\displaystyle \det } {\displaystyle \det } det ( A ) {\displaystyle \det(A)} {\displaystyle \det(A)} \det
‖     ‖ {\displaystyle \|~~\|} {\displaystyle \|~~\|} ‖ A ‖ {\displaystyle \|A\|} {\displaystyle \|A\|} Norm der Matrix A {\displaystyle A} {\displaystyle A} Matrixnorm \Vert, \| U+2016

Vektorräume

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
+ {\displaystyle +} {\displaystyle +} V + W {\displaystyle V+W} {\displaystyle V+W} Summe der Vektorräume V {\displaystyle V} {\displaystyle V} und W {\displaystyle W} {\displaystyle W} Direkte Summe + U+002B
⊕ {\displaystyle \oplus } {\displaystyle \oplus } V ⊕ W {\displaystyle V\oplus W} {\displaystyle V\oplus W} direkte Summe der Vektorräume V {\displaystyle V} {\displaystyle V} und W {\displaystyle W} {\displaystyle W} \oplus U+2295
× {\displaystyle \times } {\displaystyle \times } V × W {\displaystyle V\times W} {\displaystyle V\times W} direktes Produkt der Vektorräume V {\displaystyle V} {\displaystyle V} und W {\displaystyle W} {\displaystyle W} Direktes Produkt \times U+2A2F
⊗ {\displaystyle \otimes } {\displaystyle \otimes } V ⊗ W {\displaystyle V\otimes W} {\displaystyle V\otimes W} Tensorprodukt der Vektorräume V {\displaystyle V} {\displaystyle V} und W {\displaystyle W} {\displaystyle W} Tensorprodukt \otimes U+2297
/ {\displaystyle /} {\displaystyle /} V / U {\displaystyle V\,/\,U} {\displaystyle V\,/\,U} Faktorraum des Vektorraums V {\displaystyle V} {\displaystyle V} nach dem Untervektorraum U {\displaystyle U} {\displaystyle U} Faktorraum / U+002F
⊥ {\displaystyle {}^{\perp }} {\displaystyle {}^{\perp }} U ⊥ {\displaystyle U^{\perp }} {\displaystyle U^{\perp }} orthogonales Komplement des Untervektorraums U {\displaystyle U} {\displaystyle U} Orthogonales Komplement \perp U+27C2
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} V ∗ {\displaystyle V^{\ast }} {\displaystyle V^{\ast }} Dualraum des Vektorraums V {\displaystyle V} {\displaystyle V} Dualraum \ast U+002A
0 {\displaystyle {}^{0}} {\displaystyle {}^{0}} X 0 {\displaystyle X^{0}} {\displaystyle X^{0}} Annihilatorraum der Menge von Vektoren X {\displaystyle X} {\displaystyle X} Annihilator (Mathematik) 0 U+0030
⟨     ⟩ {\displaystyle \langle ~~\rangle } {\displaystyle \langle ~~\rangle } ⟨ X ⟩ {\displaystyle \langle X\rangle } {\displaystyle \langle X\rangle } lineare Hülle der Menge von Vektoren X {\displaystyle X} {\displaystyle X} Lineare Hülle \langle \rangle U+27E8/9

Analysis

[Bearbeiten | Quelltext bearbeiten]

Topologie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∂ {\displaystyle \partial } {\displaystyle \partial } ∂ U {\displaystyle \partial U} {\displaystyle \partial U} Rand der Menge U {\displaystyle U} {\displaystyle U} Rand (Topologie) \partial U+2202
∘ {\displaystyle {}^{\circ }} {\displaystyle {}^{\circ }} U ∘ {\displaystyle U^{\circ }} {\displaystyle U^{\circ }} Inneres der Menge U {\displaystyle U} {\displaystyle U} Innerer Punkt ^\circ U+02DA
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} U ¯ {\displaystyle {\overline {U}}} {\displaystyle {\overline {U}}} Abschluss der Menge U {\displaystyle U} {\displaystyle U} Abschluss (Topologie) \bar U+0305
  ˙ {\displaystyle {\dot {~}}} {\displaystyle {\dot {~}}} U ˙ ( x ) {\displaystyle {\dot {U}}(x)} {\displaystyle {\dot {U}}(x)} Punktierte Umgebung U {\displaystyle U} {\displaystyle U} des Punkts x {\displaystyle x} {\displaystyle x} Punktierte Umgebung \dot U+0307
∙ {\displaystyle {}^{\bullet }} {\displaystyle {}^{\bullet }} U ∙ ( x ) {\displaystyle U^{\bullet }(x)} {\displaystyle U^{\bullet }(x)} ^\bullet U+2219

Intervalle

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
[     ] {\displaystyle [~~]} {\displaystyle [~~]} [ a , b ] {\displaystyle [a,b]} {\displaystyle [a,b]} abgeschlossenes Intervall zwischen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} Intervall (Mathematik) ( )
[ ]
U+0028 U+0029
U+005B/D
]     [ {\displaystyle ]~~[} {\displaystyle ]~~[} ] a , b [ {\displaystyle ]a,b[} {\displaystyle ]a,b[} offenes Intervall zwischen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b}
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( a , b ) {\displaystyle (a,b)} {\displaystyle (a,b)}
[     [ {\displaystyle [~~[} {\displaystyle [~~[} [ a , b [ {\displaystyle [a,b[} {\displaystyle [a,b[} rechts halboffenes Intervall zwischen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b}
[     ) {\displaystyle [~~)} {\displaystyle [~~)} [ a , b ) {\displaystyle [a,b)} {\displaystyle [a,b)}
]     ] {\displaystyle ]~~]} {\displaystyle ]~~]} ] a , b ] {\displaystyle ]a,b]} {\displaystyle ]a,b]} links halboffenes Intervall zwischen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b}
(     ] {\displaystyle (~~]} {\displaystyle (~~]} ( a , b ] {\displaystyle (a,b]} {\displaystyle (a,b]}

Folgen und Reihen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
(     ) {\displaystyle (~~)} {\displaystyle (~~)} ( a n ) n {\displaystyle (a_{n})_{n}} {\displaystyle (a_{n})_{n}} Folge mit den Folgengliedern a 1 , a 2 , … {\displaystyle a_{1},a_{2},\ldots } {\displaystyle a_{1},a_{2},\ldots } Folge (Mathematik) ( ) U+0028 U+0029
→ {\displaystyle \to } {\displaystyle \to } a n → a {\displaystyle a_{n}\to a} {\displaystyle a_{n}\to a} die Folge ( a n ) {\displaystyle (a_{n})} {\displaystyle (a_{n})} konvergiert gegen den Grenzwert a {\displaystyle a} {\displaystyle a} Grenzwert (Folge) \to U+2192
∞ {\displaystyle \infty } {\displaystyle \infty } n → ∞ {\displaystyle n\to \infty } {\displaystyle n\to \infty } n {\displaystyle n} {\displaystyle n} divergiert nach unendlich Unendlichkeit \infty U+221E
∑ {\displaystyle \sum } {\displaystyle \sum } ∑ i = 1 n , ∑ i ∈ I {\displaystyle \sum _{i=1}^{n},\sum _{i\in I}} {\displaystyle \sum _{i=1}^{n},\sum _{i\in I}} Summe von i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n} bzw. über alle i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I} Summe \sum U+2211
∏ {\displaystyle \prod } {\displaystyle \prod } ∏ i = 1 n , ∏ i ∈ I {\displaystyle \prod _{i=1}^{n},\prod _{i\in I}} {\displaystyle \prod _{i=1}^{n},\prod _{i\in I}} Produkt von i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n} bzw. über alle i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I} Produkt (Mathematik) \prod U+220F
∐ {\displaystyle \coprod } {\displaystyle \coprod } ∐ i = 1 n , ∐ i ∈ I {\displaystyle \coprod _{i=1}^{n},\coprod _{i\in I}} {\displaystyle \coprod _{i=1}^{n},\coprod _{i\in I}} Koprodukt von i = 1 {\displaystyle i=1} {\displaystyle i=1} bis n {\displaystyle n} {\displaystyle n} bzw. über alle i {\displaystyle i} {\displaystyle i} in der Menge I {\displaystyle I} {\displaystyle I} Koprodukt \coprod U+2210

Funktionen

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
→ {\displaystyle \to } {\displaystyle \to } f : A → B {\displaystyle f\colon A\to B} {\displaystyle f\colon A\to B} die Funktion f {\displaystyle f} {\displaystyle f} bildet von der Menge A {\displaystyle A} {\displaystyle A} in die Menge B {\displaystyle B} {\displaystyle B} ab Funktion (Mathematik) \to U+2192
A → f B {\displaystyle A\,{\stackrel {f}{\to }}\,B} {\displaystyle A\,{\stackrel {f}{\to }}\,B}
↦ {\displaystyle \mapsto } {\displaystyle \mapsto } f : x ↦ y {\displaystyle f\colon x\mapsto y} {\displaystyle f\colon x\mapsto y} die Funktion f {\displaystyle f} {\displaystyle f} bildet das Element x {\displaystyle x} {\displaystyle x} auf das Element y {\displaystyle y} {\displaystyle y} ab \mapsto U+21A6
x ↦ f y {\displaystyle x\,{\stackrel {f}{\mapsto }}\,y} {\displaystyle x\,{\stackrel {f}{\mapsto }}\,y}
(     ) {\displaystyle (~~)} {\displaystyle (~~)} f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} Funktionswert von f {\displaystyle f} {\displaystyle f} für das Element x {\displaystyle x} {\displaystyle x} Bild (Mathematik) ( ) U+0028 U+0029
f ( X ) {\displaystyle f(X)} {\displaystyle f(X)} Bild der Menge X {\displaystyle X} {\displaystyle X} unter der Funktion f {\displaystyle f} {\displaystyle f}
[     ] {\displaystyle [~~]} {\displaystyle [~~]} f [ X ] {\displaystyle f[X]} {\displaystyle f[X]} [ ] U+005B/D
| {\displaystyle \vert } {\displaystyle \vert } f | X {\displaystyle f\vert _{X}} {\displaystyle f\vert _{X}} Einschränkung der Funktion f {\displaystyle f} {\displaystyle f} auf die Menge X {\displaystyle X} {\displaystyle X} Einschränkung \vert U+007C
⋅ {\displaystyle \cdot } {\displaystyle \cdot } f ( ⋅ ) {\displaystyle f(\cdot )} {\displaystyle f(\cdot )} Platzhalter für eine Variable als Argument der Funktion f {\displaystyle f} {\displaystyle f} Variable (Mathematik) \cdot U+22C5
− 1 {\displaystyle {}^{-1}} {\displaystyle {}^{-1}} f − 1 {\displaystyle f^{-1}} {\displaystyle f^{-1}} Umkehrfunktion zu f {\displaystyle f} {\displaystyle f} Umkehrfunktion ^{-1} U+207B
f − 1 ( Y ) {\displaystyle f^{-1}(Y)} {\displaystyle f^{-1}(Y)} Urbild der Menge Y {\displaystyle Y} {\displaystyle Y} unter der Funktion f {\displaystyle f} {\displaystyle f} Urbild (Mathematik)
∘ {\displaystyle \circ } {\displaystyle \circ } f ∘ g {\displaystyle f\circ g} {\displaystyle f\circ g} Verkettung der Funktionen f {\displaystyle f} {\displaystyle f} und g {\displaystyle g} {\displaystyle g} Komposition (Mathematik) \circ U+2218
∗ {\displaystyle \ast } {\displaystyle \ast } f ∗ g {\displaystyle f\ast g} {\displaystyle f\ast g} Faltung der Funktionen f {\displaystyle f} {\displaystyle f} und g {\displaystyle g} {\displaystyle g} Faltung (Mathematik) \ast U+2217
  ^ {\displaystyle {\hat {~}}} {\displaystyle {\hat {~}}} f ^ {\displaystyle {\hat {f}}} {\displaystyle {\hat {f}}} Fourier-Transformierte der Funktion f {\displaystyle f} {\displaystyle f} Fourier-Transformation \hat U+0302
‖   ‖ {\displaystyle \Vert ~\Vert } {\displaystyle \Vert ~\Vert } ‖ f ‖ ∞ {\displaystyle \Vert f\Vert _{\infty }} {\displaystyle \Vert f\Vert _{\infty }}, ‖ f ‖ D {\displaystyle \Vert f\Vert _{D}} {\displaystyle \Vert f\Vert _{D}} Supremumsnorm von f {\displaystyle f} {\displaystyle f}, bzw. Supremumsnorm von f {\displaystyle f} {\displaystyle f} auf dem Definitionsbereich D {\displaystyle D} {\displaystyle D} Supremumsnorm \Vert U+2016
exp {\displaystyle \exp } {\displaystyle \exp } exp ⁡ ( x ) {\displaystyle \exp(x)} {\displaystyle \exp(x)} Exponentialfunktion Exponentialfunktion \exp
log {\displaystyle \log } {\displaystyle \log } log ⁡ ( x ) {\displaystyle \log(x)} {\displaystyle \log(x)}, log a ⁡ ( x ) {\displaystyle \log _{a}(x)} {\displaystyle \log _{a}(x)} Logarithmus, Logarithmus zur Basis a {\displaystyle a} {\displaystyle a} Logarithmus \log
ln {\displaystyle \ln } {\displaystyle \ln } ln ⁡ ( x ) {\displaystyle \ln(x)} {\displaystyle \ln(x)} Natürlicher Logarithmus Natürlicher Logarithmus \ln
sin {\displaystyle \sin } {\displaystyle \sin } sin ⁡ ( x ) {\displaystyle \sin(x)} {\displaystyle \sin(x)} Sinus von x {\displaystyle x} {\displaystyle x} Sinus und Kosinus \sin
cos {\displaystyle \cos } {\displaystyle \cos } cos ⁡ ( x ) {\displaystyle \cos(x)} {\displaystyle \cos(x)} Kosinus von x {\displaystyle x} {\displaystyle x} \cos
tan {\displaystyle \tan } {\displaystyle \tan } tan ⁡ ( x ) {\displaystyle \tan(x)} {\displaystyle \tan(x)} Tangens von x {\displaystyle x} {\displaystyle x} Tangens und Kotangens \tan
cot {\displaystyle \cot } {\displaystyle \cot } cot ⁡ ( x ) {\displaystyle \cot(x)} {\displaystyle \cot(x)} Kotangens von x {\displaystyle x} {\displaystyle x} \cot
sinh {\displaystyle \sinh } {\displaystyle \sinh } sinh ⁡ ( x ) {\displaystyle \sinh(x)} {\displaystyle \sinh(x)} Sinus hyperbolicus von x {\displaystyle x} {\displaystyle x} Sinus hyperbolicus und Kosinus hyperbolicus \sinh
cosh {\displaystyle \cosh } {\displaystyle \cosh } cosh ⁡ ( x ) {\displaystyle \cosh(x)} {\displaystyle \cosh(x)} Kosinus hyperbolicus von x {\displaystyle x} {\displaystyle x} \cosh
tanh {\displaystyle \tanh } {\displaystyle \tanh } tanh ⁡ ( x ) {\displaystyle \tanh(x)} {\displaystyle \tanh(x)} Tangens hyperbolicus von x {\displaystyle x} {\displaystyle x} Tangens hyperbolicus und Kotangens hyperbolicus \tanh
coth {\displaystyle \coth } {\displaystyle \coth } coth ⁡ ( x ) {\displaystyle \coth(x)} {\displaystyle \coth(x)} Kotangens hyperbolicus von x {\displaystyle x} {\displaystyle x} \coth
Γ {\displaystyle \Gamma } {\displaystyle \Gamma } Γ ( x ) {\displaystyle \Gamma (x)} {\displaystyle \Gamma (x)} Gammafunktion Gammafunktion \Gamma

Siehe auch: Symbolische Schreibweisen für Funktionen für weitere Notationsvarianten

Grenzwerte

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
↑ {\displaystyle \uparrow } {\displaystyle \uparrow } lim x ↑ a f ( x ) {\displaystyle \lim _{x\uparrow a}f(x)} {\displaystyle \lim _{x\uparrow a}f(x)} linksseitiger Grenzwert der Funktion f {\displaystyle f} {\displaystyle f} für x {\displaystyle x} {\displaystyle x} gegen a {\displaystyle a} {\displaystyle a} Grenzwert (Funktion) \uparrow U+2191
↗ {\displaystyle \nearrow } {\displaystyle \nearrow } lim x ↗ a f ( x ) {\displaystyle \lim _{x\nearrow a}f(x)} {\displaystyle \lim _{x\nearrow a}f(x)} \nearrow U+2197
→ {\displaystyle \to } {\displaystyle \to } lim x → a f ( x ) {\displaystyle \lim _{x\to a}f(x)} {\displaystyle \lim _{x\to a}f(x)} beidseitiger Grenzwert der Funktion f {\displaystyle f} {\displaystyle f} für x {\displaystyle x} {\displaystyle x} gegen a {\displaystyle a} {\displaystyle a} \to U+2192
↘ {\displaystyle \searrow } {\displaystyle \searrow } lim x ↘ a f ( x ) {\displaystyle \lim _{x\searrow a}f(x)} {\displaystyle \lim _{x\searrow a}f(x)} rechtsseitiger Grenzwert der Funktion f {\displaystyle f} {\displaystyle f} für x {\displaystyle x} {\displaystyle x} gegen a {\displaystyle a} {\displaystyle a} \searrow U+2198
↓ {\displaystyle \downarrow } {\displaystyle \downarrow } lim x ↓ a f ( x ) {\displaystyle \lim _{x\downarrow a}f(x)} {\displaystyle \lim _{x\downarrow a}f(x)} \downarrow U+2193
X n → p X {\displaystyle X_{n}{\xrightarrow {p}}X} {\displaystyle X_{n}\xrightarrow {p} X} plim ⁡ ( X n ) = X {\displaystyle \operatorname {plim} (X_{n})=X} {\displaystyle \operatorname {plim} (X_{n})=X} Konvergenz in Wahrscheinlichkeit für X n {\displaystyle X_{n}} {\displaystyle X_{n}} gegen X {\displaystyle X} {\displaystyle X} Konvergenz (Stochastik) \to U+2192
X n → d X {\displaystyle X_{n}{\xrightarrow {d}}X} {\displaystyle X_{n}\xrightarrow {d} X} x n → d x {\displaystyle x_{n}{\xrightarrow {d}}x} {\displaystyle x_{n}\xrightarrow {d} x} Konvergenz in Verteilung für x n {\displaystyle x_{n}} {\displaystyle x_{n}} gegen x {\displaystyle x} {\displaystyle x} \to U+2192
X n → m X {\displaystyle X_{n}{\xrightarrow {m}}X} {\displaystyle X_{n}\xrightarrow {m} X} x n → m x {\displaystyle x_{n}{\xrightarrow {m}}x} {\displaystyle x_{n}\xrightarrow {m} x} Konvergenz im quadratischen Mittel für x n {\displaystyle x_{n}} {\displaystyle x_{n}} gegen x {\displaystyle x} {\displaystyle x} \to U+2192

Asymptotisches Verhalten

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∼ {\displaystyle \sim } {\displaystyle \sim } f ∼ g {\displaystyle f\sim g} {\displaystyle f\sim g} die Funktion f {\displaystyle f} {\displaystyle f} ist asymptotisch gleich der Funktion g {\displaystyle g} {\displaystyle g} Asymptotische Analyse \sim U+223C
o {\displaystyle o} {\displaystyle o} f ∈ o ( g ) {\displaystyle f\in o(g)} {\displaystyle f\in o(g)} die Funktion f {\displaystyle f} {\displaystyle f} wächst langsamer als g {\displaystyle g} {\displaystyle g} Landau-Symbole o U+006F
O {\displaystyle {\mathcal {O}}} {\displaystyle {\mathcal {O}}} f ∈ O ( g ) {\displaystyle f\in {\mathcal {O}}(g)} {\displaystyle f\in {\mathcal {O}}(g)} die Funktion f {\displaystyle f} {\displaystyle f} wächst langsamer oder genauso schnell wie g {\displaystyle g} {\displaystyle g} \mathcal{O} U+1D4AA
Θ {\displaystyle \Theta } {\displaystyle \Theta } f ∈ Θ ( g ) {\displaystyle f\in \Theta (g)} {\displaystyle f\in \Theta (g)} die Funktion f {\displaystyle f} {\displaystyle f} wächst genauso schnell wie g {\displaystyle g} {\displaystyle g} \Theta U+0398
Ω {\displaystyle \Omega } {\displaystyle \Omega } f ∈ Ω ( g ) {\displaystyle f\in \Omega (g)} {\displaystyle f\in \Omega (g)} die Funktion f {\displaystyle f} {\displaystyle f} wächst schneller oder genauso schnell wie g {\displaystyle g} {\displaystyle g} \Omega U+03A9
ω {\displaystyle \omega } {\displaystyle \omega } f ∈ ω ( g ) {\displaystyle f\in \omega (g)} {\displaystyle f\in \omega (g)} die Funktion f {\displaystyle f} {\displaystyle f} wächst schneller als g {\displaystyle g} {\displaystyle g} \omega U+03C9

Differentialrechnung

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
′ {\displaystyle {}'} {\displaystyle {}'} f ′ , f ″ {\displaystyle f',f''} {\displaystyle f',f''} erste bzw. zweite Ableitung der Funktion f {\displaystyle f} {\displaystyle f} Differentialrechnung \prime U+2032
⋅ {\displaystyle \cdot } {\displaystyle \cdot } f ˙ , f ¨ {\displaystyle {\dot {f}},{\ddot {f}}} {\displaystyle {\dot {f}},{\ddot {f}}} erste bzw. zweite Ableitung von f {\displaystyle f} {\displaystyle f} nach der Zeit (in der Physik) \dot, \ddot U+0307, U+0308
(   ) {\displaystyle {}^{(~)}} {\displaystyle {}^{(~)}} f ( n ) {\displaystyle f^{(n)}} {\displaystyle f^{(n)}} n {\displaystyle n} {\displaystyle n}-te Ableitung der Funktion f {\displaystyle f} {\displaystyle f} ( ) U+0028 U+0029
d {\displaystyle \mathrm {d} } {\displaystyle \mathrm {d} } d f d x {\displaystyle {\frac {\mathrm {d} f}{\mathrm {d} x}}} {\displaystyle {\frac {\mathrm {d} f}{\mathrm {d} x}}} Ableitung der Funktion f {\displaystyle f} {\displaystyle f} nach x {\displaystyle x} {\displaystyle x} \mathrm{d} U+0064
d f {\displaystyle \mathrm {d} f} {\displaystyle \mathrm {d} f} totales Differential der Funktion f {\displaystyle f} {\displaystyle f} Totales Differential
∂ {\displaystyle \partial } {\displaystyle \partial } ∂ f ∂ x {\displaystyle {\frac {\partial \!f}{\partial x}}} {\displaystyle {\frac {\partial \!f}{\partial x}}} partielle Ableitung der Funktion f {\displaystyle f} {\displaystyle f} nach x {\displaystyle x} {\displaystyle x} Partielle Ableitung \partial U+2202
Siehe auch: Notationen der Ableitung

Maßtheorie

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
≪ {\displaystyle \ll } {\displaystyle \ll } ν ≪ μ {\displaystyle \nu \ll \mu } {\displaystyle \nu \ll \mu } Das Maß ν {\displaystyle \nu } {\displaystyle \nu } ist absolut stetig bezüglich μ {\displaystyle \mu } {\displaystyle \mu } Absolut stetiges Maß \ll U+226A
⊥ {\displaystyle \perp } {\displaystyle \perp } ν ⊥ μ {\displaystyle \nu \perp \mu } {\displaystyle \nu \perp \mu } Das Maß ν {\displaystyle \nu } {\displaystyle \nu } ist singulär bezüglich μ {\displaystyle \mu } {\displaystyle \mu } Singuläres Maß \perp U+22A5
σ {\displaystyle \sigma } {\displaystyle \sigma } σ ( M ) {\displaystyle \sigma ({\mathcal {M}})} {\displaystyle \sigma ({\mathcal {M}})} Die kleinste σ {\displaystyle \sigma } {\displaystyle \sigma }-Algebra, welche M {\displaystyle {\mathcal {M}}} {\displaystyle {\mathcal {M}}} enthält σ-Algebra \sigma U+03C3
δ {\displaystyle \delta } {\displaystyle \delta } δ ( E ) {\displaystyle \delta ({\mathcal {E}})} {\displaystyle \delta ({\mathcal {E}})} Das kleinste Dynkin-System, welches E {\displaystyle {\mathcal {E}}} {\displaystyle {\mathcal {E}}} enthält Dynkin-System \delta U+03B4

Integralrechnung

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∫ {\displaystyle \int } {\displaystyle \int } ∫ a b {\displaystyle \int _{a}^{b}} {\displaystyle \int _{a}^{b}}, ∫ G {\displaystyle \displaystyle \int _{G}} {\displaystyle \displaystyle \int _{G}} bestimmtes Integral zwischen a {\displaystyle a} {\displaystyle a} und b {\displaystyle b} {\displaystyle b} bzw. über das Gebiet G {\displaystyle G} {\displaystyle G} Integralrechnung \int U+222B
∮ {\displaystyle \oint } {\displaystyle \oint } ∮ γ {\displaystyle \oint _{\gamma }} {\displaystyle \oint _{\gamma }} Integral über die Kurve γ {\displaystyle \gamma } {\displaystyle \gamma } Kurvenintegral \oint U+222E
∬ {\displaystyle \iint } {\displaystyle \iint } ∬ F {\displaystyle \iint _{\mathcal {F}}} {\displaystyle \iint _{\mathcal {F}}} Integral über die Fläche F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} Oberflächenintegral \iint U+222C
∭ {\displaystyle \iiint } {\displaystyle \iiint } ∭ V {\displaystyle \iiint _{V}} {\displaystyle \iiint _{V}} Integral über das Volumen V {\displaystyle V} {\displaystyle V} Volumenintegral \iiint U+222D
∫ a b ¯ {\displaystyle \int \limits _{a}^{\bar {b}}} {\displaystyle \int \limits _{a}^{\bar {b}}} ∫ a b ¯ f ( x )   d x {\displaystyle \int \limits _{a}^{\bar {b}}f(x)\ \mathrm {d} x} {\displaystyle \int \limits _{a}^{\bar {b}}f(x)\ \mathrm {d} x} Oberintegral von f {\displaystyle f} {\displaystyle f} auf [ a , b ] {\displaystyle [a,b]} {\displaystyle [a,b]} Oberintegral
\int\limits_{a}^{\bar b} f(x) \ \mathrm{d}x
∫ a _ b {\displaystyle \int \limits _{\underline {a}}^{b}} {\displaystyle \int \limits _{\underline {a}}^{b}} ∫ a _ b f ( x )   d x {\displaystyle \int \limits _{\underline {a}}^{b}f(x)\ \mathrm {d} x} {\displaystyle \int \limits _{\underline {a}}^{b}f(x)\ \mathrm {d} x} Unterintegral von f {\displaystyle f} {\displaystyle f} auf [ a , b ] {\displaystyle [a,b]} {\displaystyle [a,b]} Unterintegral
\int\limits_{\underline a}^{b} f(x) \ \mathrm{d}x
Siehe auch: Varianten des Integralzeichens

Vektoranalysis

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
∇ {\displaystyle \nabla } {\displaystyle \nabla } ∇ f {\displaystyle \nabla f} {\displaystyle \nabla f} Gradient der Funktion f {\displaystyle f} {\displaystyle f} Gradient (Mathematik) \nabla U+2207
∇ ⋅ F {\displaystyle \nabla \cdot F} {\displaystyle \nabla \cdot F} Divergenz des Vektorfelds F {\displaystyle F} {\displaystyle F} Divergenz eines Vektorfeldes
∇ × F {\displaystyle \nabla \times F} {\displaystyle \nabla \times F} Rotation des Vektorfelds F {\displaystyle F} {\displaystyle F} Rotation eines Vektorfeldes
Δ {\displaystyle \Delta } {\displaystyle \Delta } Δ f {\displaystyle \Delta f} {\displaystyle \Delta f} Laplace-Operator der Funktion f {\displaystyle f} {\displaystyle f} Laplace-Operator \Delta U+2206
◻ {\displaystyle \square } {\displaystyle \square } ◻ f {\displaystyle \square f} {\displaystyle \square f} D’Alembert-Operator der Funktion f {\displaystyle f} {\displaystyle f} D’Alembert-Operator \square U+25A1

Funktionalanalysis

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
′ {\displaystyle {}'} {\displaystyle {}'} V ′ {\displaystyle V'} {\displaystyle V'} topologischer Dualraum des topologischen Vektorraums V {\displaystyle V} {\displaystyle V} Topologischer Dualraum \prime U+2032
″ {\displaystyle {}''} {\displaystyle {}''} V ″ {\displaystyle V''} {\displaystyle V''} Bidualraum des normierten Vektorraums V {\displaystyle V} {\displaystyle V} Bidualraum
  ^ {\displaystyle {\hat {~}}} {\displaystyle {\hat {~}}} X ^ {\displaystyle {\hat {X}}} {\displaystyle {\hat {X}}} Vervollständigung des metrischen Raums X {\displaystyle X} {\displaystyle X} Vollständiger Raum \hat U+0302
↪ {\displaystyle \hookrightarrow } {\displaystyle \hookrightarrow } X ↪ Y {\displaystyle X\hookrightarrow Y} {\displaystyle X\hookrightarrow Y} Einbettung des topologischen Raums X {\displaystyle X} {\displaystyle X} in den Raum Y {\displaystyle Y} {\displaystyle Y} Einbettung (Mathematik) \hookrightarrow U+21AA
∗ {\displaystyle {}^{\ast }} {\displaystyle {}^{\ast }} T ∗ {\displaystyle T^{\ast }} {\displaystyle T^{\ast }} Adjungierter Operator des linearen Operators T {\displaystyle T} {\displaystyle T} Adjungierter Operator \ast U+002A

Stochastik

[Bearbeiten | Quelltext bearbeiten]

Kombinatorik

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
! {\displaystyle !} {\displaystyle !} n ! {\displaystyle n!} {\displaystyle n!} Zahl der Permutationen von n {\displaystyle n} {\displaystyle n} Elementen Fakultät ! U+0021
! n {\displaystyle !n} {\displaystyle !n} Zahl der fixpunktfreien Permutationen von n {\displaystyle n} {\displaystyle n} Elementen Subfakultät
n ! ! {\displaystyle n!!} {\displaystyle n!!} Zahl der echt involutorischen Permutationen ( n {\displaystyle n} {\displaystyle n} ungerade) Doppelfakultät
(     ) {\displaystyle {\tbinom {~}{~}}} {\displaystyle {\tbinom {~}{~}}} ( n k ) {\displaystyle {\tbinom {n}{k}}} {\displaystyle {\tbinom {n}{k}}} Zahl der Kombinationen ohne Wiederholung von k {\displaystyle k} {\displaystyle k} aus n {\displaystyle n} {\displaystyle n} Elementen Binomialkoeffizient \binom U+0028 U+0029
( n k 1 , … , k r ) {\displaystyle {\tbinom {n}{k_{1},\ldots ,k_{r}}}} {\displaystyle {\tbinom {n}{k_{1},\ldots ,k_{r}}}} Zahl der Anordnungen von k 1 , … , k r {\displaystyle k_{1},\ldots ,k_{r}} {\displaystyle k_{1},\ldots ,k_{r}} verschiedenen Elementen Multinomialkoeffizient
( (     ) ) {\displaystyle \left(\!{\tbinom {~}{~}}\!\right)} {\displaystyle \left(\!{\tbinom {~}{~}}\!\right)} ( ( n k ) ) {\displaystyle \left(\!{\tbinom {n}{k}}\!\right)} {\displaystyle \left(\!{\tbinom {n}{k}}\!\right)} Zahl der Kombinationen mit Wiederholung von k {\displaystyle k} {\displaystyle k} aus n {\displaystyle n} {\displaystyle n} Elementen Multimenge U+0028 U+0029
    ¯ {\displaystyle {\overline {~~}}} {\displaystyle {\overline {~~}}} n m ¯ {\displaystyle n^{\overline {m}}} {\displaystyle n^{\overline {m}}} Steigende Faktorielle ab n {\displaystyle n} {\displaystyle n} mit m {\displaystyle m} {\displaystyle m} Faktoren Fallende und steigende Faktorielle \overline U+0305
n m _ {\displaystyle n^{\underline {m}}} {\displaystyle n^{\underline {m}}} Fallende Faktorielle ab n {\displaystyle n} {\displaystyle n} mit m {\displaystyle m} {\displaystyle m} Faktoren \underline U+0332
# {\displaystyle \#} {\displaystyle \#} n # {\displaystyle n\#} {\displaystyle n\#} Produkt der Primzahlen kleiner oder gleich n {\displaystyle n} {\displaystyle n} Primorial \# U+0023

Wahrscheinlichkeitsrechnung

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
P {\displaystyle P} {\displaystyle P} P ( A ) {\displaystyle P(A)} {\displaystyle P(A)} Wahrscheinlichkeit des Ereignisses A {\displaystyle A} {\displaystyle A} Wahrscheinlichkeitsmaß P U+1D443
∣ {\displaystyle \mid } {\displaystyle \mid } P ( A ∣ B ) {\displaystyle P(A\mid B)} {\displaystyle P(A\mid B)} Wahrscheinlichkeit von A {\displaystyle A} {\displaystyle A} unter der Voraussetzung B {\displaystyle B} {\displaystyle B} Bedingte Wahrscheinlichkeit \mid U+007C
E {\displaystyle \operatorname {E} } {\displaystyle \operatorname {E} } E ⁡ [ X ∣ Y ] {\displaystyle \operatorname {E} [X\mid Y]} {\displaystyle \operatorname {E} [X\mid Y]} Erwartungswert der Zufallsvariable X {\displaystyle X} {\displaystyle X} bedingt durch Y {\displaystyle Y} {\displaystyle Y} Erwartungswert - U+0045
E {\displaystyle \operatorname {E} } {\displaystyle \operatorname {E} } E ⁡ [ X ] {\displaystyle \operatorname {E} [X]} {\displaystyle \operatorname {E} [X]} Erwartungswert der Zufallsvariable X {\displaystyle X} {\displaystyle X} - U+0045
Var {\displaystyle \operatorname {Var} } {\displaystyle \operatorname {Var} } Var ⁡ [ X ] {\displaystyle \operatorname {Var} [X]} {\displaystyle \operatorname {Var} [X]} Varianz der Zufallsvariable X {\displaystyle X} {\displaystyle X} Varianz (Stochastik) - -
sd {\displaystyle \operatorname {sd} } {\displaystyle \operatorname {sd} } sd ⁡ [ X ] {\displaystyle \operatorname {sd} [X]} {\displaystyle \operatorname {sd} [X]} Standardabweichung der Zufallsvariable X {\displaystyle X} {\displaystyle X} Standardabweichung (Wahrscheinlichkeitstheorie) - -
Cov {\displaystyle \operatorname {Cov} } {\displaystyle \operatorname {Cov} } Cov ⁡ [ X , Y ] {\displaystyle \operatorname {Cov} [X,Y]} {\displaystyle \operatorname {Cov} [X,Y]} Kovarianz der Zufallsvariablen X {\displaystyle X} {\displaystyle X} und Y {\displaystyle Y} {\displaystyle Y} Kovarianz (Stochastik)
ρ {\displaystyle \rho } {\displaystyle \rho } ρ ( X , Y ) {\displaystyle \rho (X,Y)} {\displaystyle \rho (X,Y)} Korrelation der Zufallsvariablen X {\displaystyle X} {\displaystyle X} und Y {\displaystyle Y} {\displaystyle Y} Korrelationskoeffizient \rho U+03C1
R 2 {\displaystyle R^{2}} {\displaystyle R^{2}} ρ ( X , Y ) 2 {\displaystyle \rho (X,Y)^{2}} {\displaystyle \rho (X,Y)^{2}} Quadrat der Korrelation zwischen den Zufallsvariablen X {\displaystyle X} {\displaystyle X} und Y {\displaystyle Y} {\displaystyle Y} Bestimmtheitsmaß \mathit{R}^2 U+1D445 U+00B2
∼ {\displaystyle \sim } {\displaystyle \sim } X ∼ F {\displaystyle X\sim F} {\displaystyle X\sim F} die Zufallsvariable X {\displaystyle X} {\displaystyle X} folgt der Verteilung F {\displaystyle F} {\displaystyle F} Wahrscheinlichkeitsverteilung \sim U+223C
≁ {\displaystyle \nsim } {\displaystyle \nsim } X ≁ F {\displaystyle X\nsim F} {\displaystyle X\nsim F} die Zufallsvariable X {\displaystyle X} {\displaystyle X} folgt nicht der Verteilung F {\displaystyle F} {\displaystyle F} \nsim U+2241
∼ a . s . {\displaystyle {\stackrel {a.s.}{\sim }}} {\displaystyle {\stackrel {a.s.}{\sim }}} X ∼ a . s . F {\displaystyle X\;{\stackrel {a.s.}{\sim }}\;F} {\displaystyle X\;{\stackrel {a.s.}{\sim }}\;F} die Zufallsvariable X {\displaystyle X} {\displaystyle X} folgt fast sicher der Verteilung F {\displaystyle F} {\displaystyle F} \approx U+2248
∼ a {\displaystyle {\stackrel {a}{\sim }}} {\displaystyle {\stackrel {a}{\sim }}} X ∼ a F {\displaystyle X\;{\stackrel {a}{\sim }}\;F} {\displaystyle X\;{\stackrel {a}{\sim }}\;F} die Zufallsvariable X {\displaystyle X} {\displaystyle X} folgt approximativ der Verteilung F {\displaystyle F} {\displaystyle F} \approx U+2248
∼ H 0 {\displaystyle {\stackrel {H_{0}}{\sim }}} {\displaystyle {\stackrel {H_{0}}{\sim }}} X ∼ H 0 F {\displaystyle X\;{\stackrel {H_{0}}{\sim }}\;F} {\displaystyle X\;{\stackrel {H_{0}}{\sim }}\;F} die Zufallsvariable X {\displaystyle X} {\displaystyle X} folgt unter der Nullhypothese der Verteilung F {\displaystyle F} {\displaystyle F} \sim U+223C
⊥ ⊥ {\displaystyle \perp \!\!\!\perp } {\displaystyle \perp \!\!\!\perp } X ⊥ ⊥ Y {\displaystyle X\perp \!\!\!\perp Y} {\displaystyle X\perp \!\!\!\perp Y} die Zufallsvariablen X {\displaystyle X} {\displaystyle X} und Y {\displaystyle Y} {\displaystyle Y} sind stochastisch unabhängig Stochastisch unabhängige Zufallsvariablen - -

Anmerkung: Für die Operatoren existieren einige Notationsvarianten; statt runder Klammern werden häufig auch eckige Klammern verwendet.

Statistik

[Bearbeiten | Quelltext bearbeiten]
Symbol Verwendung Interpretation Artikel LaTeX Unicode
  ~ {\displaystyle {\tilde {~}}} {\displaystyle {\tilde {~}}} x ~ {\displaystyle {\tilde {x}}} {\displaystyle {\tilde {x}}} Median der Werte x 1 , … , x n {\displaystyle x_{1},\ldots ,x_{n}} {\displaystyle x_{1},\ldots ,x_{n}} Median \tilde U+0303
  ¯ {\displaystyle {\bar {~}}} {\displaystyle {\bar {~}}} X ¯ {\displaystyle {\bar {X}}} {\displaystyle {\bar {X}}} Stichprobenmittelwert der Zufallsvariablen X 1 , … , X n {\displaystyle X_{1},\ldots ,X_{n}} {\displaystyle X_{1},\ldots ,X_{n}} Mittelwert \bar U+0305
  ¯ {\displaystyle {\bar {~}}} {\displaystyle {\bar {~}}} x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} Mittelwert der Werte x 1 , … , x n {\displaystyle x_{1},\ldots ,x_{n}} {\displaystyle x_{1},\ldots ,x_{n}} Mittelwert \bar U+0305
⟨     ⟩ {\displaystyle \langle ~~\rangle } {\displaystyle \langle ~~\rangle } ⟨ f ⟩ {\displaystyle \langle f\rangle } {\displaystyle \langle f\rangle } Mittelwert aller Werte einer Funktion f {\displaystyle f} {\displaystyle f} (in der Physik) \langle \rangle U+27E8/9
  ^ {\displaystyle {\hat {~}}} {\displaystyle {\hat {~}}} p ^ {\displaystyle {\hat {p}}} {\displaystyle {\hat {p}}} Schätzwert für den Parameter p {\displaystyle p} {\displaystyle p} Schätzfunktion \hat U+0302

Siehe auch

[Bearbeiten | Quelltext bearbeiten]
  • Allgemeine mathematische Zeichen und Begriffe nach DIN 1302
  • Formelzeichen nach DIN 1304
  • Schreibweise von Zahlen nach DIN 1333 und DIN 5008
  • Formelsatz nach DIN 1338
  • ISO/IEC 80000 Größen und Einheiten, Notation von Toleranzen/Verteilungen
  • Liste mathematischer Abkürzungen, bestehend aus lateinischen Buchstaben
  • Unicodeblock Verschiedene mathematische Symbole-A
  • Unicodeblock Verschiedene mathematische Symbole-B
  • Unicodeblock Mathematische Operatoren
  • Unicodeblock Zusätzliche Mathematische Operatoren
  • Mathematische Zeichen in Unicode
  • LaTeX-Hilfe, Setzen von Formeln mittels <math>-Umgebung, verfügbare Zeichensätze

Literatur

[Bearbeiten | Quelltext bearbeiten]
  • Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth Stachel: Mathematik. 2. Auflage. Spektrum Akademischer Verlag, 2011, ISBN 3-8274-2347-3, S. 1483 ff. 
  • Wolfgang Hackbusch: Taschenbuch der Mathematik, Band 1. 3. Auflage. Springer, 2010, ISBN 3-8351-0123-4, S. 1275 ff. 
  • Deutsches Institut für Normung: DIN 1302: Allgemeine mathematische Zeichen und Begriffe, Beuth-Verlag, 1999.
  • Deutsches Institut für Normung: DIN 1303: Vektoren, Matrizen, Tensoren; Zeichen und Begriffe, Beuth-Verlag, 1987.
  • Internationale Organisation für Normung: DIN EN ISO 80000-2: Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik, 2013.

Weblinks

[Bearbeiten | Quelltext bearbeiten]
Commons: Mathematische Symbole – Sammlung von Bildern, Videos und Audiodateien
  • Scott Pakin: The Comprehensive LaTeX Symbol List. (PDF; 32,2 MB) 3. Januar 2024; abgerufen am 8. April 2024 (englisch, Informationen zur Datei in Wikimedia Commons). 
  • Earliest Uses of Symbols of Set Theory and Logic

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. ↑ Otto Forster: Analysis 1 Differential- und Integralrechnung einer Veränderlichen. 12., verbesserte Auflage. Wiesbaden 2016, S. 338. 
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Liste_mathematischer_Symbole&oldid=260781678“
Kategorien:
  • Mathematisches Zeichen
  • Liste (Mathematik)
  • Liste (Symbole)
Versteckte Kategorie:
  • Wikipedia:Seiten, die ein veraltetes Format des math-Tags verwenden

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id