| |||
Bereich | Elektrotechnik | ||
Titel | Stecker, Steckdosen und Kupplungen für industrielle Anwendungen | ||
Teile | Teil 1: Allgemeines Teil 2: Anforderungen und Hauptmaße für die Austauschbarkeit von Stift- und Buchsensteckvorrichtungen Teil 4: Abschaltbare Steckdosen und Kupplungen mit oder ohne Verriegelung Teil 5: Anforderungen und Hauptmaße für die Austauschbarkeit von Steckern, Steckdosen, Schiffskupplungen und Schiffssteckern für Niederspannungs-Landanschlusssysteme (LVSC), Teil 6: Niederspannungs-Docking-Steckverbinder mit Stiften und Kontaktbuchsen für mobile Energiespeichereinheiten (als IEC 23H/341/CD) | ||
Letzte Ausgabe | Teil 1: 1999+ A1:2005, modifiziert + A2:2012, Teil 2:1999+A1:2007+A2:2012, Teil 4:2006, modifiziert+A1:2012, Teil 5:2017, Teil 6: 2015 | ||
Klassifikation | 29.120.30 | ||
Nationale Normen | EN 60309, DIN EN 60309/VDE 0623, ÖVE EN IEC 60309, SN EN 60309 |
IEC 60309 (bis 1999 IEC 309) ist ein internationaler Standard für „Stecker, Steckdosen und Kupplungen für industrielle Anwendungen“. Er stellt eine Form von Industrie- und Mehrphasenstecker dar.
Teil 1 des Standards beschreibt die allgemeinen Anforderungen an jeden industriell genutzten Steckverbinder. Teil 2 spezifiziert eine Reihe von Steckverbindern mit runden Gehäusen bei unterschiedlicher Anzahl und Anordnung der Kontaktstifte für verschiedene Anwendungen. Die höchstzulässige Spannung beträgt 690 Volt (Gleich- oder Wechselspannung), die maximale Strombelastbarkeit liegt bei 125 Ampere. Die zulässige Betriebstemperatur reicht von −25 bis +40 °C. Die Gestaltung als Kragenstecker bewirkt einen guten mechanischen Schutz der Steckstifte beim Umgang mit den Steckern (Baustellen, Industrie, Landwirtschaft).
Als CEE-Drehstromsteckverbinder, CEE-Steckvorrichtungen oder CeKon-Stecker/Kupplung werden umgangssprachlich die zwei gebräuchlichsten Steckverbinder des Steckersystems bezeichnet: Es sind rote Steckverbinder für Dreiphasenwechselstrom mit Neutral- und Schutzleiter und einer Nennspannung von 400 Volt sowie der blaue Verbindertyp mit nur einem Außenleiter, Neutral- und Schutzleiter für eine Spannung von 230 Volt.
Standardisierung und Normung
Diese Rundsteckvorrichtung wurde ursprünglich von der CEE (französisch Commission internationale de réglementation en vue de l’approbation de l’équipement électrique) entworfen, die seit 1985 als IECEE (System für Konformitätsbewertungssysteme elektrotechnischer Betriebsmittel und Komponenten) ein Standardisierungsorgan der Internationalen Elektrotechnischen Kommission (IEC) ist. Es war dieselbe Kommission, die auch die Standardisierung der europäischen Netzsteckertypen vorantrieb (CEE-System mit CEE 7/4 alias Schuko-Stecker, CEE 7/5 Frankreich und CEE 7/7 deutsch/französischer Hybridstecker, später dann CEE 7/15 Eurostecker).
Die Rundsteckverbindung basiert auf einem Design der Walterwerke[1], die diese 1960 als Normierungsvorschlag einreichten. Die Normierung der Industriesteckertypen wurde in der CEE 17 in den 1960er-Jahren durchgeführt, die 1968 im Vereinigten Königreich als BS 4343 sowie später als IEC 309 übernommen und 1999 zur IEC 60309 wurde.[2] Daher kommt auch die aus der englischen „CEE-form plug“ entlehnte Bezeichnung als CEE-Steckverbinder.
Die Normenreihe ist in Deutschland unter der Bezeichnung DIN EN 60309, in Österreich als OEVE/OENORM EN 60309, sowie in der Schweiz als SN EN 60309 genormt. Ebenso führt der VDE diese Norm unter der Klassifikation VDE 0623.
Seit 1. Januar 1975 durften in Westdeutschland keine Drehstromsteckverbinder nach alter Norm DIN 49450 / DIN 49451 (Flachsteckvorrichtung) mehr eingesetzt werden; mit der Wiedervereinigung mussten die in der DDR noch länger existierenden Anlagen bis 1998 auf Rundstecker umgerüstet werden.[3] Während Rundstecker auch die ebenfalls in den 1960er-Jahren entstandenen Perilex-Stecker sein können, wurde zumeist auf die IEC-60309-Stecker umgestellt, da diese sich in Europa und international schon durchgesetzt hatten. In der Schweiz wird für 10 bzw. bis 16 A dagegen der Typ 15 bzw. Typ 25 nach der Norm SN 441011 verwendet; die Verbreitung der CEE-Stecker beschränkt sich dort auf Anlagen höherer Stromaufnahme sowie auf den Camping- & Bootsbereich.
Steckerbauweise
IEC-60309-2-Steckverbinder existieren in vielen Varianten, wobei sie so entworfen wurden, dass jeweils immer nur der Stecker eines Typs in eine Buchse desselben Typs passt. Des Weiteren ist die Beschaffenheit und der Durchmesser der Verbinder von ihrer Strombelastbarkeit abhängig. Es wird zwischen den Stromstärken 16 A, 32 A, 63 A und 125 A unterschieden. Dadurch ist es nicht möglich, Stecker und Buchsen verschiedener Stromstärken zu verbinden. Die Kontaktstifte bei Steckern für 16 A haben 5 mm Durchmesser, die bei 32 A 6 mm, die bei 63 A 8 mm und die bei 125 A 10 mm Durchmesser. Der Kontaktstift des Schutzleiters hat bei allen Ausführungen einen jeweils 2 mm größeren Durchmesser. Die Stifte sind aus Vollmaterial und bei qualitativ höherwertigen Ausführungen an der Oberfläche vernickelt.
Es existieren Steckverbinder mit drei, vier, fünf oder sieben Kontakten. Die Sonderbauform mit sieben Kontakten entspricht den fünfpoligen Verbindern plus zwei Kontakte für „multifunktionale Anwendungen“ im Industriebereich. Alle Kontaktstifte sind im Gehäuse kreisförmig angeordnet (bei siebenpoligen Varianten mit einem Kontakt im Mittelpunkt des Kontaktkreises).
Bei der Gestaltung der IEC-60309-2-Steckverbinder wurde auf die Unverwechselbarkeit von Außenleiter (L) und Neutralleiter (N) sowie auf eine optimale Stromübertragung durch große Kontaktflächen zwischen den Stiften des Steckers und den Buchsen der Dose beziehungsweise Kupplung Wert gelegt. Die Buchsen sind hierzu als geschlitzte Messinghülsen mit Stahl-Spannfedern ausgeführt, so dass fast die gesamte Zylindermantelfläche zum Stromübergang zwischen Buchse und Stift wirksam ist. Unerwünschter Erwärmung bei hoher Strombelastung wird so entgegengewirkt. Als Nachteil kann die vergleichsweise große Einsteck- und Ausziehkraft gesehen werden. Eine zusätzliche Sicherung gegen unerwünschtes Trennen wird durch die Hakenfunktion des federgespannten Klappdeckels der Dose und Kupplung bewirkt.
Kennfarben
Je nach Nennspannung und Frequenz sind die Gehäuse von Stecker und Kupplung farbig markiert. Die landestypischen Netzspannungen und -frequenzen basieren heute durchgehend auf einer Frequenz von 50 oder 60 Hz, so dass die Gehäusefarbe die Nennspannung bezeichnet. Verbreitet sind dadurch gelb (110 Volt), blau (230 Volt) und rot (400 Volt). Schwarz mit 500 Volt findet man häufiger auf Schiffen.
Bei Frequenzen über 60 Hz (bis 500 Hz) wird die Kennfarbe grün verwendet. Die Kennfarbe grau wird immer dann verwendet, wenn es keine andere passende Kennfarbe für Spannung oder Frequenz gibt. Hieraus ergibt sich folgende Zuordnung der Kennfarben:
Spannungsebene | Frequenzbereich | Farbe |
---|---|---|
20–25 V | 50/60 Hz | violett
|
40–50 V | 50/60 Hz | weiß
|
100–130 V | 50/60 Hz | gelb
|
200–250 V | 50/60 Hz | blau
|
380–480 V | 50/60 Hz | rot
|
500–690 V | 50/60 Hz | schwarz
|
20–500 V | 60–500 Hz | grün
|
alle anderen | grau
|
Position des Schutzkontaktes
Die verschiedenen Spannungen und Frequenzen der Verbinder werden durch die Lage des Schutzkontaktes festgelegt. Der Schutzleiter befindet sich in einer von zwölf möglichen Positionen, aufgeteilt in 30°-Schritten im Uhrzeigersinn. Position 6 ist dabei aus Sicht einer Steckerbuchse die unterste Stelle. Diese ist markiert durch eine Außennase am Stecker und die dazugehörige Aussparung an der Steckdose. Des Weiteren ist der Schutzleiter dicker als die restlichen Kontakte. So ist Verpolungssicherheit gewährleistet. Zudem verringert sich der Übergangswiderstand, was gerade beim Schutzleiter lebenswichtig sein kann. Die Position des Schutzleiters ist darüber hinaus auf dem Deckel der Buchse in einem Stundenformat dargestellt. 6h beispielsweise bedeutet, dass der Schutzkontakt auf 6 Uhr, also an Position 6 angeschlossen ist.
Stecker für Spannungen bis 50 Volt
Stecker für Spannungen bis 50 Volt haben keinen Schutzkontakt. An dessen Stelle haben die Stecker eine Hilfsnase (und die Buchsen eine Aufnahme dafür), die wie die Hauptnase bei 6 Uhr ausgeformt ist, aber auf dem Umfang unterschiedliche Positionen einnehmen kann. Die Stecker und Kupplungen sind dadurch gegen Verpolung geschützt und können für Gleichspannung eingesetzt werden. Das Kupplungsteil ist beispielsweise violett gefärbt.
Typentabelle
In der Norm IEC 60309 sind keine genaue Spezifikationen hinsichtlich der Farben angegeben.[4][5]
Lage des Schutz- kontaktes |
Anzahl der Kontakte | |||||
---|---|---|---|---|---|---|
3 2L+PE oder L+N+PE |
4 3L+PE |
5 3L+N+PE | ||||
Spannung | Gehäusefarbe | Spannung | Gehäusefarbe | Spannung | Gehäusefarbe | |
1h | Alle nicht aufgeführten Betriebsspannungen und/oder -ströme | |||||
2h | >50 V, 300–500 Hz, nur 16 A/32 A | grün
|
>50 V, 300–500 Hz, nur 16 A/32 A | grün
|
>50 V, 300–500 Hz, nur 16 A/32 A | grün
|
3h | 50–250 V Gleichspannung | grau
|
380 V, 50 Hz, nur 16 A/32 A 440 V, 60 Hz, nur 16 A/32 A 1 |
rot
|
220/380 V, 50 Hz, nur 16 A/32 A 250/440 V, 60 Hz, nur 16 A/32 A 1 |
rot
|
4h | 100–130 V, 50–60 Hz | gelb
|
100–130 V, 50–60 Hz | gelb
|
57/100–75/130 V, 50–60 Hz | gelb
|
5h | 277 V, 60 Hz | grau
|
600–690 V, 50/60 Hz | schwarz
|
347/600–400/690 V, 50/60 Hz | schwarz
|
6h | 200–250 V, 50–60 Hz | blau
|
380–415 V, 50/60 Hz | rot
|
200/346–240/415 V, 50/60 Hz | rot
|
7h | 480–500 V, 50–60 Hz | grau
|
480–500 V, 50/60 Hz | grau
|
277/480–288/500 V, 50/60 Hz | grau
|
8h | > 250 V Gleichspannung | grau
|
— | — | ||
9h | 380–415 V, 50–60 Hz | rot
|
200–250 V, 50/60 Hz | blau
|
120/208–144/250 V, 50/60 Hz | blau
|
10h | — | > 50 V, 100–300 Hz | grün
|
— | ||
11h | — | 440–460 V, 60 Hz 2 | rot
|
250/400–265/460 V, 60 Hz 2 | rot
| |
12h | 50/60 Hz 3 | grau
|
50/60 Hz 3 | grau
|
— |
Lage der Hilfs- nase |
Anzahl der Kontakte | |
---|---|---|
2P | 3P | |
2h | 20–25 V und 40–50 V, 300 Hz grünes Gehäuse | |
3h | 20–25 V und 40–50 V, 400 Hz grünes Gehäuse | |
4h | 40–50 V, 100–200 Hz grünes Gehäuse | |
10h | 20–25 V Gleichspannung violettes Gehäuse 40–50 V Gleichspannung weißes Gehäuse |
— |
11h | 20–25 V und 40–50 V, > 400 Hz (bis 500 Hz) grünes Gehäuse | |
12h | 40–50 V, 50/60 Hz weißes Gehäuse | |
keine | 20–25 V, 50/60 Hz violettes Gehäuse |
Schutzart
Alle Steckverbinder müssen so gebaut sein, dass sie mindestens die Schutzart IP44 aufweisen. Ab einem Bemessungsstrom von 125 A ist die Schutzart IP67 vorgeschrieben. Um die Schutzart IP67 zu erreichen, wurde ein ringförmiger Bajonettverschluss mit Dichtgummi entwickelt. Auch Steckverbinder in den kleineren Stromstärken gibt es in der Schutzart IP67. Diese Verbindungsform ist besonders für wasserungeschützte Anwendung im Außenbereich empfohlen. In Steckverbinder der Schutzart IP44 kann Stauwasser eindringen (z. B. Pfützen) und es könnte zu unerwünschten Stromschutzabschaltungen durch den Fehlerstromschutzschalter kommen.
Pilotkontakt
Da das (absichtliche oder unabsichtliche) Unterbrechen des Stromkreises durch Auftrennen der Steckverbindung zu einem Schaltlichtbogen an Stift und Buchse und damit zu höherem Verschleiß der Steckverbindung sowie evtl. zu einer Gefährdung der den Stecker ziehenden Person führen kann, ist bei den IEC-60309-Steckverbindungen ab der 63-A-Ausführung optional ein Pilotkontakt in der Mitte vorgesehen. Dieser ist kürzer als die restlichen Kontakte und soll beim Ziehen unter Last den Steuerstrom für Anlagen unterbrechen oder ein Schütz auslösen, um den Stromkreis an einem dafür konstruierten Schalter zu trennen, bevor dies an der Steckverbindung geschieht. Der Pilotkontakt ist dazu da, den Stecker mit dem Neutralleiter zu verbinden. Damit kann ein Schützantrieb über einen der Außenleiter gegen den Neutralleiter geschaltet werden und so das Gerät vor dem Auftrennen der Steckerkontakte abschalten.
Am häufigsten verwendete Typen
Die verbreitetsten Typen sind CEE blau L+N+PE und CEE rot 3L+N+PE. Auf den Steckergehäusen werden manchmal die Außenleiter statt mit dem Buchstaben „L“ für das englische Live, zu deutsch ‚Leiter‘, mit „P“ für ‚Phase‘ bezeichnet – nicht zu verwechseln mit „PE“ Protective Earth, was den Schutzleiter bezeichnet. Die Gehäusefarbe bezieht sich auf die regional verfügbare Netzspannung, bei 110 V gelb, bei 230 V blau und bei 400 V rot. Jeweils vorherrschend sind die 16-Ampere- und 32-Ampere-Versionen.
L+N+PE, 6h
Der blaue Steckverbinder „L+N+PE, 6h“ kann für das in europäischen Haushalten übliche einphasige 230-Volt-Wechselstromnetz eingesetzt werden. Der Stecker ist technisch höherwertiger als die in Hausinstallationen üblichen Steckverbindungen (z. B. Schukostecker in Deutschland und Österreich oder SEV 1011 in der Schweiz):
- mechanischer Schutz der Stifte durch Steckerkragen
- Verpolungsschutz (im Vergleich zu Schuko)
- Stecksicherheit durch Verriegelung
- größere Kontaktflächen
- höherer Kontaktdruck
- dauerhaft strombelastbar bis 16 Ampere (im Vergleich zu Schuko und SN 441011-Typen 12 und 13)
- internationale Normung
- wegen eindeutiger Spezifikation der zu verwendenden Materialien keine „Billigausführungen“
- aufgrund der Schutzart IP44 kann die Steckverbindung auch im Außenbereich verwendet werden
- (IP4x = Geschützt gegen feste Fremdkörper mit Durchmesser ≥ 1,0 mm & Geschützt gegen den Zugang mit einem Draht)
- (IPx4 = Schutz gegen allseitiges Spritzwasser)
Für höhere Wechselspannungsstromstärken können größere Ausführungen der blauen Steckverbinder bis 32 A, 63 A und 125 A eingesetzt werden, die jedoch selten anzutreffen sind.
Da die blauen „L+N+PE-6h-Steckverbinder“ in Europa nahezu universell auf Campingplätzen oder in Yachthäfen zu finden sind, werden sie umgangssprachlich oft auch „Campingstecker“ oder „Caravanstecker“ genannt. Auch in Yachthäfen haben sie andere Stecksysteme verdrängt. Außer in der Schweiz finden sie auch in Verkehrs-, Industrie-, Bau- und Gewerbebetrieben Anwendung (u. a. werden hochwertige Serverracks über diese Stecker angeschlossen).
Netzschalter in Endgeräten schalten häufig nur einpolig. Durch die definierte Kontaktbelegung kann im Gegensatz zum Schuko-System mit diesen Steckverbindern sichergestellt werden, dass immer der Außenleiter und nicht der Neutralleiter geschaltet wird. Adapterleitungen von einem Schukostecker auf eine blaue CEE-Wechselstromkupplung sind daher nicht normkonform (Phasensicherheit). Bei Adaptern von einem blauen CEE-Stecker auf eine SN-441011-Kupplung ist bei letzterem zwingend Typ 23 einzusetzen, da nur dieser Typ für 16 A spezifiziert ist.
In der Schweiz sind die CEE-16 A-Steckdosen (entspricht SEV-Typ 63) ausschließlich im Campingbereich und an Bootsanlegestellen zugelassen, anderswo ist der SN-441011-Stecker Typ 23 einzusetzen. Die für 32 A spezifizierten Steckdosen sind in der Schweiz nicht zugelassen, da ein Typ-7-Stecker der veralteten Norm SEV 1011 so in die CEE-Buchse eingesteckt werden kann, dass Kontakt zwischen dem Typ-7-Erdstift und dem Außenleiter der CEE-Buchse hergestellt wird.[6]
3L+N+PE, 6h
In den meisten europäischen Ländern mit Nutzung von 400-V-Dreiphasenwechselstrom wird bevorzugt der rote Steckverbinder „3L+N+PE, 6h“ verwendet, meist in den Versionen für 16 A und 32 A. Durch die große Verbreitung wird der fünfpolige Stecker im deutschen Sprachraum umgangssprachlich „Drehstromstecker“ genannt (allerdings gibt es in der IEC-60309-Norm auch vierpolige Stecker zur Anbindung von Dreiphasenwechselstrom ohne Neutralleiter). Angewendet wird diese Steckkombination, um „Drehstrom-Verbraucher“ (Baumaschinen, Heizgeräte, Motoren, kleine Werkzeugmaschinen und so weiter) an das Dreiphasenwechselstromnetz anzuschließen. Des Weiteren werden sie bei hohen Stromstärken (wie zum Beispiel Licht- und Tonanlagen in der Bühnentechnik) genutzt.
Die Steckverbindungen sind in den Ausführungen 16 A, 32 A, 63 A und 125 A gebräuchlich. Die Versionen für 16 A und 32 A sehen auf den ersten Blick gleich aus, die für 32 A ist jedoch etwas größer als die für 16 A. Die Steckverbindungen besitzen fünf Kontakte, wobei drei davon die Außenleiter (L1, L2, L3) des Netzes, einer den Neutralleiter (N) und der dickere, voreilende den Schutzleiter (Erdpotential, PE) führt.
L+N+PE, 4h
Der einphasige gelbe Steckverbinder „L+N+PE, 4h“ hatte sich in Großbritannien im Außenbereich verbreitet, bevor dort großteils die Spannungsebene von 110 V auf 230 V umgestellt wurde. In weiten – aber abnehmenden – Bereichen ist eine doppelte Spannungseinspeisung (110 V/230 V) im Haushaltsbereich weiterhin üblich. Die IEC-60309-Steckverbinder heißen dort generell „MK Commando“ nach der Stecker-Modellreihe Commando des Herstellers MK Electric.[7]
3L+N+PE, 9h
Der blaue Steckverbinder „3L+N+PE, 9h“ ist in den Vereinigten Staaten als Alternative zu den NEMA-Steckern im Außenbereich verfügbar, wird aber auch in anderen Ländern mit 120 V (teilweise auch 110 V) Netzspannung eingesetzt. Insbesondere in der Veranstaltungstechnik ist das Stecksystem verbreitet – allerdings wird hier meist nicht dreiphasiger Strom abgegriffen, sondern es wird mit den in den USA verbreiteten Einphasen-Dreileiternetz-Anschlüssen gearbeitet (in Europa völlig ungebräuchlich). Dabei kann alternativ 120 V zwischen Außenleiter und Neutralleiter abgegriffen werden, oder es wird die doppelte Spannung zwischen zwei Außenleitern mit 240 V genommen. Da für diese beiden Betriebsarten keine drei Außenleiter durchgeleitet werden müssen, gibt es auch noch einen (nicht standardkonformen) gelben vierpoligen Steckverbinder für 120 und 240 V einphasigen Wechselstrom.
3L+PE, 6h
Drehstrommotoren benötigen für den Betrieb keinen Neutralleiter (umgangssprachlich in Deutschland: „Bauerndrehstrom“), daher gibt es neben dem fünfpoligen Drehstromstecker auch eine vierpolige Variante „3L+PE, 6h“ in rot für 400 Volt dreiphasigen Wechselstrom. In der Praxis finden sich allerdings eher alte vieradrige Kabel mit fünfpoligen Steckern. Deshalb sollte bei unbekannten Kabeln mit fünfpoligen Steckern und Kupplungen durch Messen (zum Beispiel mit einem Durchgangsprüfer) überprüft werden, ob der Neutralleiter mitgeführt ist. Fehlt dieser, arbeiten über dieses Kabel angeschlossene Verbraucher für 230 V nicht – sie benötigen den Neutralleiter. Sind unterschiedliche Geräte an verschiedenen Außenleitern angeschlossen, kann dies zu Überspannung und Zerstörung von Geräten führen. Verlängerungskabel u. ä. mit fünfpoligen Steckverbindern ohne mitgeführten Neutralleiter sind nicht zulässig. Für diesen Zweck stehen vierpolige Steckverbinder zur Verfügung. Anschlusskabel von Maschinen sind häufig vieradrig, wenn die Maschine keinen Neutralleiter benötigt. Dies spart Kupfer und ist unproblematisch, da die Verdrahtung der Maschine keinen Anschluss von zusätzlichen Verbrauchern erlaubt. Der Schutzleiter muss selbstverständlich auch in diesem Fall vorhanden sein, ebenso eine korrekte Schutzleiterverbindung an der speisenden Steckdose. Da beides nicht für die Funktion erforderlich ist, empfiehlt sich auch hier eine Schutzleiterprüfung.
7-polig: 3L+N+PE+2Sonderleitungen, Stellung des Schutzleiters je nach Anwendung von 1h bis 12h
7-polige Steckvorrichtungen bieten Lösungen bei mehrfunktionalen Anforderungen in Industrie, Landwirtschaft und Gewerbe. Zum Beispiel für folgende Funktionen:
Sterndreieck-Anlauf, Regeln, Steuern, Überwachen, Melden, Quittieren, elektrisch Verriegeln.
Sonderanwendungen
Phasenwendestecker
Die Verdrahtungsreihenfolge der Außenleiter (Phasenfolge) ist an Steckdosen mit einem Rechtsdrehfeld vorgeschrieben, das heißt mit Sicht auf die Buchse muss im Uhrzeigersinn erst der erste, dann der zweite und schließlich der dritte Außenleiter seine Spannungsspitze erreichen. In der Praxis kann man sich auf die korrekte Phasenfolge nicht immer verlassen, sie wird mangels Prüfwerkzeug wie einem Drehfeldmessgerät oder aus Bequemlichkeit bzw. Unachtsamkeit beim Klemmen nicht immer eingehalten. Deshalb kann es vorkommen, dass Drehstrommotoren sich nicht in der erwarteten Drehrichtung drehen. Abhilfe schafft das Vertauschen zweier Außenleiter, um ein rechtswendiges Drehfeld herzustellen. Bei Phasenwendesteckern kann dies durch Drehen zweier Steckkontakte erfolgen, die hierzu in einem drehbaren Teller gelagert sind.[8]
Drehrichtungsprüfstecker
Zur Prüfung der richtigen Drehrichtung von Drehstromsteckdosen und Kupplungsanschlüssen bieten mehrere Hersteller Prüfstecker an. Hier ist das Prüfgerät bereits in einem passenden Stecker integriert und es wird direkt durch Glimmlampen oder mehrere LED angezeigt, ob die Phasenfolge richtig oder falsch ist, oder eine Phase stromlos geschaltet ist.
Adapterleitungen
Adapterleitungen finden Anwendung, wenn eine Verbindung hergestellt werden muss und der gewünschte Steckanschluss vor Ort nicht zur Verfügung steht. Dabei sind viele zweckmäßige Varianten und Variationen möglich. Soll beispielsweise ein Gerät mit 16-A-Stecker an einer Steckdose mit 32 A angeschlossen werden, so muss durch den Adapter in jedem Fall der Überstromschutz sowie ggf. zusätzlich auch der Fehlerstromschutz angepasst bzw. sichergestellt werden. Dies ist etwa durch in den Adapter integrierte Leitungsschutzschalter möglich, welche den Stromkreis bei Überlast abschalten. Auch kann ein Fehlerstrom-Schutzschalter im Adapter integriert werden. Durch den Adapter ist zudem die Schutzart der integrierten Schaltgeräte der Umgebung anzupassen.
Es sind auch normativ nicht zulässige Adapterleitungen käuflich, die beim Anwender (als elektrotechnischem Laien) unbewusst eine Gefährdung verursachen können. Dabei können die elektrischen Schutzmaßnahmen wie z. B. der Überstromschutz durch übersicherte Leitungsquerschnitte, der Fehlerstromschutz durch fehlende oder falsch bemessene Fehlerstrom-Schutzschalter oder die Verpolungssicherheit reduziert bzw. aufgehoben werden. Auch fehlen insbesondere Adaptern zum Anschluss an haushaltsübliche Schuko- oder SN 441011-Steckdosen die notwendige Eignung zur Strombelastbarkeit mit dauerhaft 16 A sowie die notwendige Verpolungssicherheit zwischen Phase und Neutralleiter auf CEE-Kupplungsseite. Das Nichteinhalten der elektrischen Schutzmaßnahmen kann zu Stromunfällen mit Personengefährdung und Kabelbrand führen.
Siehe auch
Weblinks
Einzelnachweise
- ↑ WALTHER-WERKE: Unternehmen Historie. Abgerufen am 3. Oktober 2023.
- ↑ General Introduction of CEE plugs and receptacles. In: MENNEKES industrial plugs and receptacles. Rey & Lenferna, archiviert vom (nicht mehr online verfügbar) am 31. März 2012; abgerufen am 3. September 2011: „History: CEE plugs and sockets base on the “CEE 17” standard (also BS4343) which was introduced in the 1960s and that later led to the a.m. IEC 60309 standard.“
- ↑ BGV A3: Elektrische Anlagen und Betriebsmittel. (PDF; 660 kB) In: BG-Vorschriften / Unfallverhütungsvorschriften. 1. März 1979, archiviert vom (nicht mehr online verfügbar) am 27. Oktober 2011; abgerufen am 1. September 2011: „Umstellen von Drehstromsteckvorrichtungen nach der alten Norm DIN 49450/49451 (Flachsteckvorrichtung) auf das Rundsteckvorrichtungssystem nach DIN 49462/49463 bis zum 31. Dezember 1997“
- ↑ Gerhard Kiefer, Herbert Schmolke: VDE Schriftenreihe 106; „DIN VDE 0100 richtig angewandt, Errichtung von Niederspannungsanlagen übersichtlich dargestellt“. 5. Auflage. VDE Verlag GmbH, Berlin und Offenbach 2012, ISBN 978-3-8007-3384-2, S. 408 (Tabelle 21.1).
- ↑ ABB: CEE-Industrie-Steckverbindungen IEC 60 309. (PDF) S. 18, abgerufen am 27. November 2020.
- ↑ toplight.ch
- ↑ Commando Plugs and Sockets. MK Electric, abgerufen am 24. September 2020.
- ↑ Wolfgang Burmeister, André Croissant, Matthias Kraner: Das Baustellenhandbuch der Elektroinstallation. 2. Auflage. Forum Verlag Herkert, 2014, ISBN 978-3-86586-289-1 (eingeschränkte Vorschau in der Google-Buchsuche).