Ein hamiltonsches Vektorfeld ist im mathematischen Teilgebiet der symplektischen Geometrie (wiederum ein Teilgebiet der Differentialgeometrie) ein spezielles glattes Vektorfeld auf einer symplektischen Mannigfaltigkeit, welches mit dessen symplektischer Form kompatibel ist und von einer glatten Abbildung (genannt Hamilton-Funktion) auf dieser erzeugt wird.
Definition
Sei eine symplektische Mannigfaltigkeit und die dazugehörige Menge aller glatten Vektorfelder. Ein hamiltonsches Vektorfeld für ist ein glattes Vektorfeld , für welches eine glatte Abbildung mit der Bedingung
existiert, wobei das innere Produkt ist.[1]
Aufgrund der Nichtdegeneriertheit der symplektischen Form folgt für glatte Vektorfelder mit , dass sogar . Für eine Hamilton-Funktion gibt es daher maximal ein zugehöriges hamiltonsches Vektorfeld , welches sofern existent daher auch als notiert wird. Tatsächlich ist Existenz gegeben, wie sich anhand eines expliziten Ausdrucks zeigen lässt: Für jeden Punkt gibt es eine lineare Abbildung . Aufgrund der Nichtdegeneriertheit der symplektischen Form ist diese injektiv, aufgrund gleicher Dimensionen von Tangential- und Kotangentialraum sogar bijektiv und aufgrund der glatten Abhängigkeit der symplektischen Form vom Basispunkt ergeben diese gemeinsam einen Vektorbündelisomorphismus . Das hamiltonsche Vektorfeld einer Hamilton-Funktion lässt sich daher darstellen als:
Eigenschaften
- Hamiltonsche Vektorfelder sind symplektisch.[1] Für eine Hamilton-Funktion folgt mit der Cartan-Formel und der Geschlossenheit der symplektischen Form :
- Linearkombinationen von hamiltonschen Vektorfeldern sind hamiltonsche Vektorfelder. Für Skalare und glatte Funktionen gilt mit der Linearität des Cartan-Differntials und der Bilinearität der symplektischen Form :
- woraus aufgrund der Nichtdegeneriertheit der symplektischen Form folgt.
- Für glatte Funktionen gilt mit der Produkt-Regel des Cartan-Differentials:
- woraus aufgrund der Nichtdegeneriertheit der symplektischen Form folgt.
- Für einen Symplektomorphismus und eine glatte Funktion gilt:[2]
- Lie-Klammern von hamiltonschen Vektorfeldern sind hamiltonsche Vektorfelder. Für glatte Funktionen gilt:[3]
Lie-Algebra der hamiltonschen Vektorfelder
Gemäß der genannten Eigenschaften bilden die hamiltonschen Vektorfelder auf einer symplektischen Mannigfaltigkeit einen Vektorraum und mit der Lie-Klammer sogar eine Lie-Algebra, notiert als . Es gibt Lie-Algebrenhomomorphismen:[4]
Verbindung mit der De-Rham-Kohomologie
Verbindung mit der nullten De-Rham-Kohomologie
Ein spezieller Untervektorraum des Vektorraumes der Hamilton-Funktionen ist die nullte De-Rham-Kohomologie der lokal konstanten (auf jeder Zusammenhangskomponente konstanten) Hamilton-Funktionen. Da in der Definition des hamiltonschen Vektorfeldes einer Hamilton-Funktion nur dessen Cartan-Differential auftaucht, können gerade die lokal konstanten Hamilton-Funktionen beliebig zu dieser hinzuaddiert werden, ohne einen Einfluss auf das erzeugte hamiltonsche Vektorfeld zu haben. Daher gibt es eine exakte Sequenz:[5]
Aus dieser folgt direkt, dass genau dann jedes hamiltonsche Vektorfeld von einer eindeutigen Hamilton-Funktion erzeugt wird, wenn die nullte De-Rham-Kohomologie der symplektischen Mannigfaltigkeit trivial ist.
Verbindung mit der ersten De-Rham-Kohomologie
Per Definition ist für ein symplektisches Vektorfeld die -Form geschlossen und erzeugt daher ein Element der ersten De-Rham-Kohomologie. Aufgrund der Bilinearität der symplektischen Form ist diese Zuordnung eine lineare Abbildung:
- .
ist dabei genau dann das neutrale Element, wenn es sich von diesem um eine exakte -Form unterscheidet, also wenn ein hamiltonsches Vektorfeld ist. Daher gibt es eine exakte Sequenz:[6]
Aus dieser folgt direkt, dass genau dann jedes symplektische Vektorfeld sogar ein hamiltonsches Vektorfeld ist, wenn die erste De-Rham-Kohomologie der symplektischen Mannigfaltigkeit trivial ist.
Anwendung in der Physik
Hamiltonsche Vektorfelder sind entscheidend für die Formulierung der hamiltonschen Mechanik, denn ihre Flüsse verlaufen entlang konstanter Werte der zugrundeliegenden Hamilton-Funktion. Das beschreibt die Energieerhaltung einer mechanischen Bewegung im Phasenraum. Für einen Punkt und eine Hamilton-Funktion ist ihr (lokaler) Fluss mit einem offenen Intervall mit eine Lösung der Differentialgleichung mit Anfangswertbedingung:
- .
Mit der Definition des hamiltonschen Vektorfeldes und der Antisymmetrie der symplektischen Form folgt:
womit konstant ist. Allgemeiner kann diese Rechnung für zwei verschiedene Hamilton-Funktionen betrachtet werden, wobei sich mit der Poisson-Klammer analog ergibt:
also genau dann konstant ist, wenn . Das sind jeweils die Liouville-Gleichung für die Zeitentwicklung und das Noether-Theorem über die Korrespondenz von Erhaltungsgrößen und Symmetrie.
Weblinks
Literatur
- Dusa McDuff und Dietmar Salamon: Introduction to Symplectic Topology. In: Clarendon Press (Hrsg.): Oxford mathematical monographs, Oxford science publications. 1998, ISBN 0-19-851177-9 (englisch).
- Jean-Luc Brylinski: Loop Spaces, Characteristic Classes and Geometric Quantization. In: Birkhäuser Boston (Hrsg.): Modern Birkhäuser Classics. 2007, ISBN 978-0-8176-4730-8 (englisch).