Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Formelsammlung Trigonometrie – Wikipedia
Formelsammlung Trigonometrie – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Halbwinkelformeln)
x n {\displaystyle {\sqrt[{n}]{x}}} {\displaystyle {\sqrt[{n}]{x}}}
Dieser Artikel ist eine Formelsammlung zum Thema Trigonometrie. Es werden mathematische Symbole verwendet, die im Artikel Liste mathematischer Symbole erläutert werden.

Dreieckberechnung

[Bearbeiten | Quelltext bearbeiten]
Ein Dreieck mit den üblichen Bezeichnungen
Ein Dreieck mit den üblichen Bezeichnungen

Die folgende Liste enthält die meisten bekannten Formeln aus der Trigonometrie in der Ebene. Die meisten dieser Beziehungen verwenden trigonometrische Funktionen.

Dabei werden die folgenden Bezeichnungen verwendet: Das Dreieck A B C {\displaystyle ABC} {\displaystyle ABC} habe die Seiten a = B C {\displaystyle a=BC} {\displaystyle a=BC}, b = C A {\displaystyle b=CA} {\displaystyle b=CA} und c = A B {\displaystyle c=AB} {\displaystyle c=AB}, die Winkel α {\displaystyle \alpha } {\displaystyle \alpha }, β {\displaystyle \beta } {\displaystyle \beta } und γ {\displaystyle \gamma } {\displaystyle \gamma } bei den Ecken A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} und C {\displaystyle C} {\displaystyle C}. Ferner seien r {\displaystyle r} {\displaystyle r} der Umkreisradius, ρ {\displaystyle \rho } {\displaystyle \rho } der Inkreisradius und ρ a {\displaystyle \rho _{a}} {\displaystyle \rho _{a}}, ρ b {\displaystyle \rho _{b}} {\displaystyle \rho _{b}} und ρ c {\displaystyle \rho _{c}} {\displaystyle \rho _{c}} die Ankreisradien (und zwar die Radien der Ankreise, die den Ecken A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} bzw. C {\displaystyle C} {\displaystyle C} gegenüberliegen) des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC}. Die Variable s {\displaystyle s} {\displaystyle s} steht für den halben Umfang des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC}:

s = a + b + c 2 {\displaystyle s={\frac {a+b+c}{2}}} {\displaystyle s={\frac {a+b+c}{2}}}.

Schließlich wird die Fläche des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC} mit F {\displaystyle F} {\displaystyle F} bezeichnet. Alle anderen Bezeichnungen werden jeweils in den entsprechenden Abschnitten, in denen sie vorkommen, erläutert.

Es ist zu beachten, dass hier die Bezeichnungen für den Umkreisradius r {\displaystyle r} {\displaystyle r}, den Inkreisradius ρ {\displaystyle \rho } {\displaystyle \rho } und die drei Ankreisradien ρ a {\displaystyle \rho _{a}} {\displaystyle \rho _{a}}, ρ b {\displaystyle \rho _{b}} {\displaystyle \rho _{b}}, ρ c {\displaystyle \rho _{c}} {\displaystyle \rho _{c}} benutzt werden. Oft werden davon abweichend für dieselben Größen auch die Bezeichnungen R {\displaystyle R} {\displaystyle R}, r {\displaystyle r} {\displaystyle r}, r a {\displaystyle r_{a}} {\displaystyle r_{a}}, r b {\displaystyle r_{b}} {\displaystyle r_{b}}, r c {\displaystyle r_{c}} {\displaystyle r_{c}} verwendet.

Winkelsumme

[Bearbeiten | Quelltext bearbeiten]
α + β + γ = 180 ∘ {\displaystyle \alpha +\beta +\gamma =180^{\circ }} {\displaystyle \alpha +\beta +\gamma =180^{\circ }}

Sinussatz

[Bearbeiten | Quelltext bearbeiten]

Formel 1:

a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 r = a b c 2 F {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2r={\frac {abc}{2F}}} {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2r={\frac {abc}{2F}}}

Formel 2:

wenn α = 90 ∘ {\displaystyle \alpha =90^{\circ }} {\displaystyle \alpha =90^{\circ }}

sin ⁡ β = b a {\displaystyle \sin \beta ={\frac {b}{a}}} {\displaystyle \sin \beta ={\frac {b}{a}}}
sin ⁡ γ = c a {\displaystyle \sin \gamma ={\frac {c}{a}}} {\displaystyle \sin \gamma ={\frac {c}{a}}}

wenn β = 90 ∘ {\displaystyle \beta =90^{\circ }} {\displaystyle \beta =90^{\circ }}

sin ⁡ α = a b {\displaystyle \sin \alpha ={\frac {a}{b}}} {\displaystyle \sin \alpha ={\frac {a}{b}}}
sin ⁡ γ = c b {\displaystyle \sin \gamma ={\frac {c}{b}}} {\displaystyle \sin \gamma ={\frac {c}{b}}}

wenn γ = 90 ∘ {\displaystyle \gamma =90^{\circ }} {\displaystyle \gamma =90^{\circ }}

sin ⁡ α = a c {\displaystyle \sin \alpha ={\frac {a}{c}}} {\displaystyle \sin \alpha ={\frac {a}{c}}}
sin ⁡ β = b c {\displaystyle \sin \beta ={\frac {b}{c}}} {\displaystyle \sin \beta ={\frac {b}{c}}}

Kosinussatz

[Bearbeiten | Quelltext bearbeiten]

Formel 1:

a 2 = b 2 + c 2 − 2 b c   cos ⁡ α {\displaystyle a^{2}=b^{2}+c^{2}-2bc\ \cos \alpha } {\displaystyle a^{2}=b^{2}+c^{2}-2bc\ \cos \alpha }
b 2 = c 2 + a 2 − 2 c a   cos ⁡ β {\displaystyle b^{2}=c^{2}+a^{2}-2ca\ \cos \beta } {\displaystyle b^{2}=c^{2}+a^{2}-2ca\ \cos \beta }
c 2 = a 2 + b 2 − 2 a b   cos ⁡ γ {\displaystyle c^{2}=a^{2}+b^{2}-2ab\ \cos \gamma } {\displaystyle c^{2}=a^{2}+b^{2}-2ab\ \cos \gamma }

Formel 2:

wenn α = 90 ∘ {\displaystyle \alpha =90^{\circ }} {\displaystyle \alpha =90^{\circ }}

cos ⁡ β = c a {\displaystyle \cos \beta ={\frac {c}{a}}} {\displaystyle \cos \beta ={\frac {c}{a}}}
cos ⁡ γ = b a {\displaystyle \cos \gamma ={\frac {b}{a}}} {\displaystyle \cos \gamma ={\frac {b}{a}}}

wenn β = 90 ∘ {\displaystyle \beta =90^{\circ }} {\displaystyle \beta =90^{\circ }}

cos ⁡ α = c b {\displaystyle \cos \alpha ={\frac {c}{b}}} {\displaystyle \cos \alpha ={\frac {c}{b}}}
cos ⁡ γ = a b {\displaystyle \cos \gamma ={\frac {a}{b}}} {\displaystyle \cos \gamma ={\frac {a}{b}}}

wenn γ = 90 ∘ {\displaystyle \gamma =90^{\circ }} {\displaystyle \gamma =90^{\circ }}

a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} {\displaystyle a^{2}+b^{2}=c^{2}} (Satz des Pythagoras)
cos ⁡ α = b c {\displaystyle \cos \alpha ={\frac {b}{c}}} {\displaystyle \cos \alpha ={\frac {b}{c}}}
cos ⁡ β = a c {\displaystyle \cos \beta ={\frac {a}{c}}} {\displaystyle \cos \beta ={\frac {a}{c}}}

Projektionssatz

[Bearbeiten | Quelltext bearbeiten]
a = b cos ⁡ γ + c cos ⁡ β b = c cos ⁡ α + a cos ⁡ γ c = a cos ⁡ β + b cos ⁡ α {\displaystyle {\begin{aligned}a&=b\,\cos \gamma +c\,\cos \beta \\b&=c\,\cos \alpha +a\,\cos \gamma \\c&=a\,\cos \beta +b\,\cos \alpha \end{aligned}}} {\displaystyle {\begin{aligned}a&=b\,\cos \gamma +c\,\cos \beta \\b&=c\,\cos \alpha +a\,\cos \gamma \\c&=a\,\cos \beta +b\,\cos \alpha \end{aligned}}}

Die Mollweideschen Formeln

[Bearbeiten | Quelltext bearbeiten]
b + c a = cos ⁡ β − γ 2 sin ⁡ α 2 , c + a b = cos ⁡ γ − α 2 sin ⁡ β 2 , a + b c = cos ⁡ α − β 2 sin ⁡ γ 2 {\displaystyle {\frac {b+c}{a}}={\frac {\cos {\frac {\beta -\gamma }{2}}}{\sin {\frac {\alpha }{2}}}},\quad {\frac {c+a}{b}}={\frac {\cos {\frac {\gamma -\alpha }{2}}}{\sin {\frac {\beta }{2}}}},\quad {\frac {a+b}{c}}={\frac {\cos {\frac {\alpha -\beta }{2}}}{\sin {\frac {\gamma }{2}}}}} {\displaystyle {\frac {b+c}{a}}={\frac {\cos {\frac {\beta -\gamma }{2}}}{\sin {\frac {\alpha }{2}}}},\quad {\frac {c+a}{b}}={\frac {\cos {\frac {\gamma -\alpha }{2}}}{\sin {\frac {\beta }{2}}}},\quad {\frac {a+b}{c}}={\frac {\cos {\frac {\alpha -\beta }{2}}}{\sin {\frac {\gamma }{2}}}}}
b − c a = sin ⁡ β − γ 2 cos ⁡ α 2 , c − a b = sin ⁡ γ − α 2 cos ⁡ β 2 , a − b c = sin ⁡ α − β 2 cos ⁡ γ 2 {\displaystyle {\frac {b-c}{a}}={\frac {\sin {\frac {\beta -\gamma }{2}}}{\cos {\frac {\alpha }{2}}}},\quad {\frac {c-a}{b}}={\frac {\sin {\frac {\gamma -\alpha }{2}}}{\cos {\frac {\beta }{2}}}},\quad {\frac {a-b}{c}}={\frac {\sin {\frac {\alpha -\beta }{2}}}{\cos {\frac {\gamma }{2}}}}} {\displaystyle {\frac {b-c}{a}}={\frac {\sin {\frac {\beta -\gamma }{2}}}{\cos {\frac {\alpha }{2}}}},\quad {\frac {c-a}{b}}={\frac {\sin {\frac {\gamma -\alpha }{2}}}{\cos {\frac {\beta }{2}}}},\quad {\frac {a-b}{c}}={\frac {\sin {\frac {\alpha -\beta }{2}}}{\cos {\frac {\gamma }{2}}}}}

Tangenssatz

[Bearbeiten | Quelltext bearbeiten]

Formel 1:

b + c b − c = tan ⁡ β + γ 2 tan ⁡ β − γ 2 = cot ⁡ α 2 tan ⁡ β − γ 2 {\displaystyle {\frac {b+c}{b-c}}={\frac {\tan {\frac {\beta +\gamma }{2}}}{\tan {\frac {\beta -\gamma }{2}}}}={\frac {\cot {\frac {\alpha }{2}}}{\tan {\frac {\beta -\gamma }{2}}}}} {\displaystyle {\frac {b+c}{b-c}}={\frac {\tan {\frac {\beta +\gamma }{2}}}{\tan {\frac {\beta -\gamma }{2}}}}={\frac {\cot {\frac {\alpha }{2}}}{\tan {\frac {\beta -\gamma }{2}}}}}

Analoge Formeln gelten für a + b a − b {\displaystyle {\frac {a+b}{a-b}}} {\displaystyle {\frac {a+b}{a-b}}} und c + a c − a {\displaystyle {\frac {c+a}{c-a}}} {\displaystyle {\frac {c+a}{c-a}}}:

a + b a − b = tan ⁡ α + β 2 tan ⁡ α − β 2 = cot ⁡ γ 2 tan ⁡ α − β 2 {\displaystyle {\frac {a+b}{a-b}}={\frac {\tan {\frac {\alpha +\beta }{2}}}{\tan {\frac {\alpha -\beta }{2}}}}={\frac {\cot {\frac {\gamma }{2}}}{\tan {\frac {\alpha -\beta }{2}}}}} {\displaystyle {\frac {a+b}{a-b}}={\frac {\tan {\frac {\alpha +\beta }{2}}}{\tan {\frac {\alpha -\beta }{2}}}}={\frac {\cot {\frac {\gamma }{2}}}{\tan {\frac {\alpha -\beta }{2}}}}}
c + a c − a = tan ⁡ γ + α 2 tan ⁡ γ − α 2 = cot ⁡ β 2 tan ⁡ γ − α 2 {\displaystyle {\frac {c+a}{c-a}}={\frac {\tan {\frac {\gamma +\alpha }{2}}}{\tan {\frac {\gamma -\alpha }{2}}}}={\frac {\cot {\frac {\beta }{2}}}{\tan {\frac {\gamma -\alpha }{2}}}}} {\displaystyle {\frac {c+a}{c-a}}={\frac {\tan {\frac {\gamma +\alpha }{2}}}{\tan {\frac {\gamma -\alpha }{2}}}}={\frac {\cot {\frac {\beta }{2}}}{\tan {\frac {\gamma -\alpha }{2}}}}}

Wegen tan ⁡ ( − x ) = − tan ⁡ ( x ) {\displaystyle \tan(-x)=-\tan(x)} {\displaystyle \tan(-x)=-\tan(x)} bleibt eine dieser Formeln gültig, wenn sowohl die Seiten als auch die zugehörigen Winkel vertauscht werden, also etwa:

a + c a − c = tan ⁡ α + γ 2 tan ⁡ α − γ 2 = cot ⁡ β 2 tan ⁡ α − γ 2 {\displaystyle {\frac {a+c}{a-c}}={\frac {\tan {\frac {\alpha +\gamma }{2}}}{\tan {\frac {\alpha -\gamma }{2}}}}={\frac {\cot {\frac {\beta }{2}}}{\tan {\frac {\alpha -\gamma }{2}}}}} {\displaystyle {\frac {a+c}{a-c}}={\frac {\tan {\frac {\alpha +\gamma }{2}}}{\tan {\frac {\alpha -\gamma }{2}}}}={\frac {\cot {\frac {\beta }{2}}}{\tan {\frac {\alpha -\gamma }{2}}}}}

Formel 2:

wenn α = 90 ∘ {\displaystyle \alpha =90^{\circ }} {\displaystyle \alpha =90^{\circ }}

tan ⁡ β = b c {\displaystyle \tan \beta ={\frac {b}{c}}} {\displaystyle \tan \beta ={\frac {b}{c}}}
tan ⁡ γ = c b {\displaystyle \tan \gamma ={\frac {c}{b}}} {\displaystyle \tan \gamma ={\frac {c}{b}}}

wenn β = 90 ∘ {\displaystyle \beta =90^{\circ }} {\displaystyle \beta =90^{\circ }}

tan ⁡ α = a c {\displaystyle \tan \alpha ={\frac {a}{c}}} {\displaystyle \tan \alpha ={\frac {a}{c}}}
tan ⁡ γ = c a {\displaystyle \tan \gamma ={\frac {c}{a}}} {\displaystyle \tan \gamma ={\frac {c}{a}}}

wenn γ = 90 ∘ {\displaystyle \gamma =90^{\circ }} {\displaystyle \gamma =90^{\circ }}

tan ⁡ α = a b {\displaystyle \tan \alpha ={\frac {a}{b}}} {\displaystyle \tan \alpha ={\frac {a}{b}}}
tan ⁡ β = b a {\displaystyle \tan \beta ={\frac {b}{a}}} {\displaystyle \tan \beta ={\frac {b}{a}}}

Formeln mit dem halben Umfang

[Bearbeiten | Quelltext bearbeiten]

Im Folgenden bedeutet s {\displaystyle s} {\displaystyle s} immer die Hälfte des Umfangs des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC}, also s = a + b + c 2 {\displaystyle s={\frac {a+b+c}{2}}} {\displaystyle s={\frac {a+b+c}{2}}}.

s − a = b + c − a 2 {\displaystyle s-a={\frac {b+c-a}{2}}} {\displaystyle s-a={\frac {b+c-a}{2}}}
s − b = c + a − b 2 {\displaystyle s-b={\frac {c+a-b}{2}}} {\displaystyle s-b={\frac {c+a-b}{2}}}
s − c = a + b − c 2 {\displaystyle s-c={\frac {a+b-c}{2}}} {\displaystyle s-c={\frac {a+b-c}{2}}}
( s − b ) + ( s − c ) = a {\displaystyle \left(s-b\right)+\left(s-c\right)=a} {\displaystyle \left(s-b\right)+\left(s-c\right)=a}
( s − c ) + ( s − a ) = b {\displaystyle \left(s-c\right)+\left(s-a\right)=b} {\displaystyle \left(s-c\right)+\left(s-a\right)=b}
( s − a ) + ( s − b ) = c {\displaystyle \left(s-a\right)+\left(s-b\right)=c} {\displaystyle \left(s-a\right)+\left(s-b\right)=c}
( s − a ) + ( s − b ) + ( s − c ) = s {\displaystyle \left(s-a\right)+\left(s-b\right)+\left(s-c\right)=s} {\displaystyle \left(s-a\right)+\left(s-b\right)+\left(s-c\right)=s}
sin ⁡ α 2 = ( s − b ) ( s − c ) b c {\displaystyle \sin {\frac {\alpha }{2}}={\sqrt {\frac {\left(s-b\right)\left(s-c\right)}{bc}}}} {\displaystyle \sin {\frac {\alpha }{2}}={\sqrt {\frac {\left(s-b\right)\left(s-c\right)}{bc}}}}
sin ⁡ β 2 = ( s − c ) ( s − a ) c a {\displaystyle \sin {\frac {\beta }{2}}={\sqrt {\frac {\left(s-c\right)\left(s-a\right)}{ca}}}} {\displaystyle \sin {\frac {\beta }{2}}={\sqrt {\frac {\left(s-c\right)\left(s-a\right)}{ca}}}}
sin ⁡ γ 2 = ( s − a ) ( s − b ) a b {\displaystyle \sin {\frac {\gamma }{2}}={\sqrt {\frac {\left(s-a\right)\left(s-b\right)}{ab}}}} {\displaystyle \sin {\frac {\gamma }{2}}={\sqrt {\frac {\left(s-a\right)\left(s-b\right)}{ab}}}}
cos ⁡ α 2 = s ( s − a ) b c {\displaystyle \cos {\frac {\alpha }{2}}={\sqrt {\frac {s\left(s-a\right)}{bc}}}} {\displaystyle \cos {\frac {\alpha }{2}}={\sqrt {\frac {s\left(s-a\right)}{bc}}}}
cos ⁡ β 2 = s ( s − b ) c a {\displaystyle \cos {\frac {\beta }{2}}={\sqrt {\frac {s\left(s-b\right)}{ca}}}} {\displaystyle \cos {\frac {\beta }{2}}={\sqrt {\frac {s\left(s-b\right)}{ca}}}}
cos ⁡ γ 2 = s ( s − c ) a b {\displaystyle \cos {\frac {\gamma }{2}}={\sqrt {\frac {s\left(s-c\right)}{ab}}}} {\displaystyle \cos {\frac {\gamma }{2}}={\sqrt {\frac {s\left(s-c\right)}{ab}}}}
tan ⁡ α 2 = ( s − b ) ( s − c ) s ( s − a ) {\displaystyle \tan {\frac {\alpha }{2}}={\sqrt {\frac {\left(s-b\right)\left(s-c\right)}{s\left(s-a\right)}}}} {\displaystyle \tan {\frac {\alpha }{2}}={\sqrt {\frac {\left(s-b\right)\left(s-c\right)}{s\left(s-a\right)}}}}
tan ⁡ β 2 = ( s − c ) ( s − a ) s ( s − b ) {\displaystyle \tan {\frac {\beta }{2}}={\sqrt {\frac {\left(s-c\right)\left(s-a\right)}{s\left(s-b\right)}}}} {\displaystyle \tan {\frac {\beta }{2}}={\sqrt {\frac {\left(s-c\right)\left(s-a\right)}{s\left(s-b\right)}}}}
tan ⁡ γ 2 = ( s − a ) ( s − b ) s ( s − c ) {\displaystyle \tan {\frac {\gamma }{2}}={\sqrt {\frac {\left(s-a\right)\left(s-b\right)}{s\left(s-c\right)}}}} {\displaystyle \tan {\frac {\gamma }{2}}={\sqrt {\frac {\left(s-a\right)\left(s-b\right)}{s\left(s-c\right)}}}}
s = 4 r cos ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 {\displaystyle s=4r\cos {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}} {\displaystyle s=4r\cos {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}}
s − a = 4 r cos ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 {\displaystyle s-a=4r\cos {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}} {\displaystyle s-a=4r\cos {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}}

Flächeninhalt und Umkreisradius

[Bearbeiten | Quelltext bearbeiten]

Der Flächeninhalt des Dreiecks wird hier mit F {\displaystyle F} {\displaystyle F} bezeichnet (nicht, wie heute üblich, mit A {\displaystyle A} {\displaystyle A}, um eine Verwechselung mit der Dreiecksecke A {\displaystyle A} {\displaystyle A} auszuschließen):

Heronsche Formel:

F = s ( s − a ) ( s − b ) ( s − c ) = 1 4 ( a + b + c ) ( b + c − a ) ( c + a − b ) ( a + b − c ) {\displaystyle F={\sqrt {s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}={\frac {1}{4}}{\sqrt {\left(a+b+c\right)\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}} {\displaystyle F={\sqrt {s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}={\frac {1}{4}}{\sqrt {\left(a+b+c\right)\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}}
F = 1 4 2 ( b 2 c 2 + c 2 a 2 + a 2 b 2 ) − ( a 4 + b 4 + c 4 ) {\displaystyle F={\frac {1}{4}}{\sqrt {2\left(b^{2}c^{2}+c^{2}a^{2}+a^{2}b^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)}}} {\displaystyle F={\frac {1}{4}}{\sqrt {2\left(b^{2}c^{2}+c^{2}a^{2}+a^{2}b^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)}}}

Weitere Flächenformeln:

F = 1 2 b c sin ⁡ α = 1 2 c a sin ⁡ β = 1 2 a b sin ⁡ γ {\displaystyle F={\frac {1}{2}}bc\sin \alpha ={\frac {1}{2}}ca\sin \beta ={\frac {1}{2}}ab\sin \gamma } {\displaystyle F={\frac {1}{2}}bc\sin \alpha ={\frac {1}{2}}ca\sin \beta ={\frac {1}{2}}ab\sin \gamma }
F = 1 2 a h a = 1 2 b h b = 1 2 c h c {\displaystyle F={\frac {1}{2}}ah_{a}={\frac {1}{2}}bh_{b}={\frac {1}{2}}ch_{c}} {\displaystyle F={\frac {1}{2}}ah_{a}={\frac {1}{2}}bh_{b}={\frac {1}{2}}ch_{c}}, wobei h a {\displaystyle h_{a}} {\displaystyle h_{a}}, h b {\displaystyle h_{b}} {\displaystyle h_{b}} und h c {\displaystyle h_{c}} {\displaystyle h_{c}} die Längen der von A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} bzw. C {\displaystyle C} {\displaystyle C} ausgehenden Höhen des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC} sind.
F = 2 r 2 sin α sin β sin γ {\displaystyle F=2r^{2}\sin \,\alpha \,\sin \,\beta \,\sin \,\gamma } {\displaystyle F=2r^{2}\sin \,\alpha \,\sin \,\beta \,\sin \,\gamma }
F = a b c 4 r {\displaystyle F={\frac {abc}{4r}}} {\displaystyle F={\frac {abc}{4r}}}
F = ρ s = ρ a ( s − a ) = ρ b ( s − b ) = ρ c ( s − c ) {\displaystyle F=\rho s=\rho _{a}\left(s-a\right)=\rho _{b}\left(s-b\right)=\rho _{c}\left(s-c\right)} {\displaystyle F=\rho s=\rho _{a}\left(s-a\right)=\rho _{b}\left(s-b\right)=\rho _{c}\left(s-c\right)}
F = ρ ρ a ρ b ρ c {\displaystyle F={\sqrt {\rho \rho _{a}\rho _{b}\rho _{c}}}} {\displaystyle F={\sqrt {\rho \rho _{a}\rho _{b}\rho _{c}}}}
F = 4 ρ r cos α 2 cos β 2 cos γ 2 {\displaystyle F=4\rho r\cos \,{\frac {\alpha }{2}}\,\cos \,{\frac {\beta }{2}}\,\cos \,{\frac {\gamma }{2}}} {\displaystyle F=4\rho r\cos \,{\frac {\alpha }{2}}\,\cos \,{\frac {\beta }{2}}\,\cos \,{\frac {\gamma }{2}}}
F = s 2 tan α 2 tan β 2 tan γ 2 {\displaystyle F=s^{2}\tan \,{\frac {\alpha }{2}}\,\tan \,{\frac {\beta }{2}}\,\tan \,{\frac {\gamma }{2}}} {\displaystyle F=s^{2}\tan \,{\frac {\alpha }{2}}\,\tan \,{\frac {\beta }{2}}\,\tan \,{\frac {\gamma }{2}}}
F = ρ 2 h a h b h c ( h a − 2 ρ ) ( h b − 2 ρ ) ( h c − 2 ρ ) {\displaystyle F=\rho ^{2}{\sqrt {\dfrac {h_{a}\,h_{b}\,h_{c}}{(h_{a}-2\rho )(h_{b}-2\rho )(h_{c}-2\rho )}}}} {\displaystyle F=\rho ^{2}{\sqrt {\dfrac {h_{a}\,h_{b}\,h_{c}}{(h_{a}-2\rho )(h_{b}-2\rho )(h_{c}-2\rho )}}}}, mit 1 ρ = 1 h a + 1 h b + 1 h c {\displaystyle {\dfrac {1}{\rho }}={\dfrac {1}{h_{a}}}+{\dfrac {1}{h_{b}}}+{\dfrac {1}{h_{c}}}} {\displaystyle {\dfrac {1}{\rho }}={\dfrac {1}{h_{a}}}+{\dfrac {1}{h_{b}}}+{\dfrac {1}{h_{c}}}}
F = r h a h b h c 2 {\displaystyle F={\sqrt {\dfrac {r\,h_{a}\,h_{b}\,h_{c}}{2}}}} {\displaystyle F={\sqrt {\dfrac {r\,h_{a}\,h_{b}\,h_{c}}{2}}}}
F = h a h b h c 2 ρ ( sin ⁡ α + sin ⁡ β + sin ⁡ γ ) {\displaystyle F={\dfrac {\,h_{a}\,h_{b}\,h_{c}}{2\rho \,{(\sin \alpha +\sin \beta +\sin \gamma )}}}} {\displaystyle F={\dfrac {\,h_{a}\,h_{b}\,h_{c}}{2\rho \,{(\sin \alpha +\sin \beta +\sin \gamma )}}}}

Erweiterter Sinussatz:

a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 r = a b c 2 F {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2r={\frac {abc}{2F}}} {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2r={\frac {abc}{2F}}}

a = 2 r sin ⁡ α {\displaystyle a=2r\,\sin \alpha } {\displaystyle a=2r\,\sin \alpha }
b = 2 r sin ⁡ β {\displaystyle b=2r\,\sin \beta } {\displaystyle b=2r\,\sin \beta }
c = 2 r sin ⁡ γ {\displaystyle c=2r\,\sin \gamma } {\displaystyle c=2r\,\sin \gamma }
r = a b c 4 F {\displaystyle r={\frac {abc}{4F}}} {\displaystyle r={\frac {abc}{4F}}}

In- und Ankreisradien

[Bearbeiten | Quelltext bearbeiten]

In diesem Abschnitt werden Formeln aufgelistet, in denen der Inkreisradius ρ {\displaystyle \rho } {\displaystyle \rho } und die Ankreisradien ρ a {\displaystyle \rho _{a}} {\displaystyle \rho _{a}}, ρ b {\displaystyle \rho _{b}} {\displaystyle \rho _{b}} und ρ c {\displaystyle \rho _{c}} {\displaystyle \rho _{c}} des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC} vorkommen.

ρ = ( s − a ) tan ⁡ α 2 = ( s − b ) tan ⁡ β 2 = ( s − c ) tan ⁡ γ 2 {\displaystyle \rho =\left(s-a\right)\tan {\frac {\alpha }{2}}=\left(s-b\right)\tan {\frac {\beta }{2}}=\left(s-c\right)\tan {\frac {\gamma }{2}}} {\displaystyle \rho =\left(s-a\right)\tan {\frac {\alpha }{2}}=\left(s-b\right)\tan {\frac {\beta }{2}}=\left(s-c\right)\tan {\frac {\gamma }{2}}}
ρ = 4 r sin ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 = s tan ⁡ α 2 tan ⁡ β 2 tan ⁡ γ 2 {\displaystyle \rho =4r\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}=s\tan {\frac {\alpha }{2}}\tan {\frac {\beta }{2}}\tan {\frac {\gamma }{2}}} {\displaystyle \rho =4r\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}=s\tan {\frac {\alpha }{2}}\tan {\frac {\beta }{2}}\tan {\frac {\gamma }{2}}}
ρ = r ( cos ⁡ α + cos ⁡ β + cos ⁡ γ − 1 ) {\displaystyle \rho =r\left(\cos \alpha +\cos \beta +\cos \gamma -1\right)} {\displaystyle \rho =r\left(\cos \alpha +\cos \beta +\cos \gamma -1\right)}
ρ = F s = a b c 4 r s {\displaystyle \rho ={\frac {F}{s}}={\frac {abc}{4rs}}} {\displaystyle \rho ={\frac {F}{s}}={\frac {abc}{4rs}}}
ρ = ( s − a ) ( s − b ) ( s − c ) s = 1 2 ( b + c − a ) ( c + a − b ) ( a + b − c ) a + b + c {\displaystyle \rho ={\sqrt {\frac {\left(s-a\right)\left(s-b\right)\left(s-c\right)}{s}}}={\frac {1}{2}}{\sqrt {\frac {\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{a+b+c}}}} {\displaystyle \rho ={\sqrt {\frac {\left(s-a\right)\left(s-b\right)\left(s-c\right)}{s}}}={\frac {1}{2}}{\sqrt {\frac {\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{a+b+c}}}}
ρ = a cot ⁡ β 2 + cot ⁡ γ 2 = b cot ⁡ γ 2 + cot ⁡ α 2 = c cot ⁡ α 2 + cot ⁡ β 2 {\displaystyle \rho ={\frac {a}{\cot {\frac {\beta }{2}}+\cot {\frac {\gamma }{2}}}}={\frac {b}{\cot {\frac {\gamma }{2}}+\cot {\frac {\alpha }{2}}}}={\frac {c}{\cot {\frac {\alpha }{2}}+\cot {\frac {\beta }{2}}}}} {\displaystyle \rho ={\frac {a}{\cot {\frac {\beta }{2}}+\cot {\frac {\gamma }{2}}}}={\frac {b}{\cot {\frac {\gamma }{2}}+\cot {\frac {\alpha }{2}}}}={\frac {c}{\cot {\frac {\alpha }{2}}+\cot {\frac {\beta }{2}}}}}
a ⋅ b + b ⋅ c + c ⋅ a = s 2 + ρ 2 + 4 ⋅ ρ ⋅ r {\displaystyle a\cdot b+b\cdot c+c\cdot a=s^{2}+\rho ^{2}+4\cdot \rho \cdot r} {\displaystyle a\cdot b+b\cdot c+c\cdot a=s^{2}+\rho ^{2}+4\cdot \rho \cdot r} [1]

Wichtige Ungleichung: 2 ρ ≤ r {\displaystyle 2\rho \leq r} {\displaystyle 2\rho \leq r}; Gleichheit tritt nur dann ein, wenn Dreieck A B C {\displaystyle ABC} {\displaystyle ABC} gleichseitig ist.

ρ a = s tan ⁡ α 2 = ( s − b ) cot ⁡ γ 2 = ( s − c ) cot ⁡ β 2 {\displaystyle \rho _{a}=s\tan {\frac {\alpha }{2}}=\left(s-b\right)\cot {\frac {\gamma }{2}}=\left(s-c\right)\cot {\frac {\beta }{2}}} {\displaystyle \rho _{a}=s\tan {\frac {\alpha }{2}}=\left(s-b\right)\cot {\frac {\gamma }{2}}=\left(s-c\right)\cot {\frac {\beta }{2}}}
ρ a = 4 r sin ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 = ( s − a ) tan ⁡ α 2 cot ⁡ β 2 cot ⁡ γ 2 {\displaystyle \rho _{a}=4r\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}=\left(s-a\right)\tan {\frac {\alpha }{2}}\cot {\frac {\beta }{2}}\cot {\frac {\gamma }{2}}} {\displaystyle \rho _{a}=4r\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}=\left(s-a\right)\tan {\frac {\alpha }{2}}\cot {\frac {\beta }{2}}\cot {\frac {\gamma }{2}}}
ρ a = r ( − cos ⁡ α + cos ⁡ β + cos ⁡ γ + 1 ) {\displaystyle \rho _{a}=r\left(-\cos \alpha +\cos \beta +\cos \gamma +1\right)} {\displaystyle \rho _{a}=r\left(-\cos \alpha +\cos \beta +\cos \gamma +1\right)}
ρ a = F s − a = a b c 4 r ( s − a ) {\displaystyle \rho _{a}={\frac {F}{s-a}}={\frac {abc}{4r\left(s-a\right)}}} {\displaystyle \rho _{a}={\frac {F}{s-a}}={\frac {abc}{4r\left(s-a\right)}}}
ρ a = s ( s − b ) ( s − c ) s − a = 1 2 ( a + b + c ) ( c + a − b ) ( a + b − c ) b + c − a {\displaystyle \rho _{a}={\sqrt {\frac {s\left(s-b\right)\left(s-c\right)}{s-a}}}={\frac {1}{2}}{\sqrt {\frac {\left(a+b+c\right)\left(c+a-b\right)\left(a+b-c\right)}{b+c-a}}}} {\displaystyle \rho _{a}={\sqrt {\frac {s\left(s-b\right)\left(s-c\right)}{s-a}}}={\frac {1}{2}}{\sqrt {\frac {\left(a+b+c\right)\left(c+a-b\right)\left(a+b-c\right)}{b+c-a}}}}

Die Ankreise sind gleichberechtigt: Jede Formel für ρ a {\displaystyle \rho _{a}} {\displaystyle \rho _{a}} gilt in analoger Form für ρ b {\displaystyle \rho _{b}} {\displaystyle \rho _{b}} und ρ c {\displaystyle \rho _{c}} {\displaystyle \rho _{c}}.

1 ρ = 1 ρ a + 1 ρ b + 1 ρ c {\displaystyle {\frac {1}{\rho }}={\frac {1}{\rho _{a}}}+{\frac {1}{\rho _{b}}}+{\frac {1}{\rho _{c}}}} {\displaystyle {\frac {1}{\rho }}={\frac {1}{\rho _{a}}}+{\frac {1}{\rho _{b}}}+{\frac {1}{\rho _{c}}}}

Höhen

[Bearbeiten | Quelltext bearbeiten]

Die Längen der von A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} bzw. C {\displaystyle C} {\displaystyle C} ausgehenden Höhen des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC} werden mit h a {\displaystyle h_{a}} {\displaystyle h_{a}}, h b {\displaystyle h_{b}} {\displaystyle h_{b}} und h c {\displaystyle h_{c}} {\displaystyle h_{c}} bezeichnet.

h a = b sin ⁡ γ = c sin ⁡ β = 2 F a = 2 r sin ⁡ β sin ⁡ γ = 2 r ( cos ⁡ α + cos ⁡ β cos ⁡ γ ) {\displaystyle h_{a}=b\sin \gamma =c\sin \beta ={\frac {2F}{a}}=2r\sin \beta \sin \gamma =2r\left(\cos \alpha +\cos \beta \cos \gamma \right)} {\displaystyle h_{a}=b\sin \gamma =c\sin \beta ={\frac {2F}{a}}=2r\sin \beta \sin \gamma =2r\left(\cos \alpha +\cos \beta \cos \gamma \right)}
h b = c sin ⁡ α = a sin ⁡ γ = 2 F b = 2 r sin ⁡ γ sin ⁡ α = 2 r ( cos ⁡ β + cos ⁡ α cos ⁡ γ ) {\displaystyle h_{b}=c\sin \alpha =a\sin \gamma ={\frac {2F}{b}}=2r\sin \gamma \sin \alpha =2r\left(\cos \beta +\cos \alpha \cos \gamma \right)} {\displaystyle h_{b}=c\sin \alpha =a\sin \gamma ={\frac {2F}{b}}=2r\sin \gamma \sin \alpha =2r\left(\cos \beta +\cos \alpha \cos \gamma \right)}
h c = a sin ⁡ β = b sin ⁡ α = 2 F c = 2 r sin ⁡ α sin ⁡ β = 2 r ( cos ⁡ γ + cos ⁡ α cos ⁡ β ) {\displaystyle h_{c}=a\sin \beta =b\sin \alpha ={\frac {2F}{c}}=2r\sin \alpha \sin \beta =2r\left(\cos \gamma +\cos \alpha \cos \beta \right)} {\displaystyle h_{c}=a\sin \beta =b\sin \alpha ={\frac {2F}{c}}=2r\sin \alpha \sin \beta =2r\left(\cos \gamma +\cos \alpha \cos \beta \right)}
h a = a cot ⁡ β + cot ⁡ γ ; h b = b cot ⁡ γ + cot ⁡ α ; h c = c cot ⁡ α + cot ⁡ β {\displaystyle h_{a}={\frac {a}{\cot \beta +\cot \gamma }};\;\;\;\;\;h_{b}={\frac {b}{\cot \gamma +\cot \alpha }};\;\;\;\;\;h_{c}={\frac {c}{\cot \alpha +\cot \beta }}} {\displaystyle h_{a}={\frac {a}{\cot \beta +\cot \gamma }};\;\;\;\;\;h_{b}={\frac {b}{\cot \gamma +\cot \alpha }};\;\;\;\;\;h_{c}={\frac {c}{\cot \alpha +\cot \beta }}}
F = 1 2 a h a = 1 2 b h b = 1 2 c h c {\displaystyle F={\frac {1}{2}}ah_{a}={\frac {1}{2}}bh_{b}={\frac {1}{2}}ch_{c}} {\displaystyle F={\frac {1}{2}}ah_{a}={\frac {1}{2}}bh_{b}={\frac {1}{2}}ch_{c}}
1 h a + 1 h b + 1 h c = 1 ρ = 1 ρ a + 1 ρ b + 1 ρ c {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{\rho }}={\frac {1}{\rho _{a}}}+{\frac {1}{\rho _{b}}}+{\frac {1}{\rho _{c}}}} {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{\rho }}={\frac {1}{\rho _{a}}}+{\frac {1}{\rho _{b}}}+{\frac {1}{\rho _{c}}}}

Hat das Dreieck A B C {\displaystyle ABC} {\displaystyle ABC} einen rechten Winkel bei C {\displaystyle C} {\displaystyle C} (ist also γ = 90 ∘ {\displaystyle \gamma =90^{\circ }} {\displaystyle \gamma =90^{\circ }}), dann gilt

h c = a b c {\displaystyle h_{c}={\frac {ab}{c}}} {\displaystyle h_{c}={\frac {ab}{c}}}
h a = b {\displaystyle h_{a}=b} {\displaystyle h_{a}=b}
h b = a {\displaystyle h_{b}=a} {\displaystyle h_{b}=a}

Seitenhalbierende

[Bearbeiten | Quelltext bearbeiten]

Die Längen der von A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} bzw. C {\displaystyle C} {\displaystyle C} ausgehenden Seitenhalbierenden des Dreiecks A B C {\displaystyle ABC} {\displaystyle ABC} werden s a {\displaystyle s_{a}} {\displaystyle s_{a}}, s b {\displaystyle s_{b}} {\displaystyle s_{b}} und s c {\displaystyle s_{c}} {\displaystyle s_{c}} genannt.

s a = 1 2 2 b 2 + 2 c 2 − a 2 = 1 2 b 2 + c 2 + 2 b c cos ⁡ α = a 2 4 + b c cos ⁡ α {\displaystyle s_{a}={\frac {1}{2}}{\sqrt {2b^{2}+2c^{2}-a^{2}}}={\frac {1}{2}}{\sqrt {b^{2}+c^{2}+2bc\cos \alpha }}={\sqrt {{\frac {a^{2}}{4}}+bc\cos \alpha }}} {\displaystyle s_{a}={\frac {1}{2}}{\sqrt {2b^{2}+2c^{2}-a^{2}}}={\frac {1}{2}}{\sqrt {b^{2}+c^{2}+2bc\cos \alpha }}={\sqrt {{\frac {a^{2}}{4}}+bc\cos \alpha }}}
s b = 1 2 2 c 2 + 2 a 2 − b 2 = 1 2 c 2 + a 2 + 2 c a cos ⁡ β = b 2 4 + c a cos ⁡ β {\displaystyle s_{b}={\frac {1}{2}}{\sqrt {2c^{2}+2a^{2}-b^{2}}}={\frac {1}{2}}{\sqrt {c^{2}+a^{2}+2ca\cos \beta }}={\sqrt {{\frac {b^{2}}{4}}+ca\cos \beta }}} {\displaystyle s_{b}={\frac {1}{2}}{\sqrt {2c^{2}+2a^{2}-b^{2}}}={\frac {1}{2}}{\sqrt {c^{2}+a^{2}+2ca\cos \beta }}={\sqrt {{\frac {b^{2}}{4}}+ca\cos \beta }}}
s c = 1 2 2 a 2 + 2 b 2 − c 2 = 1 2 a 2 + b 2 + 2 a b cos ⁡ γ = c 2 4 + a b cos ⁡ γ {\displaystyle s_{c}={\frac {1}{2}}{\sqrt {2a^{2}+2b^{2}-c^{2}}}={\frac {1}{2}}{\sqrt {a^{2}+b^{2}+2ab\cos \gamma }}={\sqrt {{\frac {c^{2}}{4}}+ab\cos \gamma }}} {\displaystyle s_{c}={\frac {1}{2}}{\sqrt {2a^{2}+2b^{2}-c^{2}}}={\frac {1}{2}}{\sqrt {a^{2}+b^{2}+2ab\cos \gamma }}={\sqrt {{\frac {c^{2}}{4}}+ab\cos \gamma }}}
s a 2 + s b 2 + s c 2 = 3 4 ( a 2 + b 2 + c 2 ) {\displaystyle s_{a}^{2}+s_{b}^{2}+s_{c}^{2}={\frac {3}{4}}\left(a^{2}+b^{2}+c^{2}\right)} {\displaystyle s_{a}^{2}+s_{b}^{2}+s_{c}^{2}={\frac {3}{4}}\left(a^{2}+b^{2}+c^{2}\right)}

Winkelhalbierende

[Bearbeiten | Quelltext bearbeiten]

Wir bezeichnen mit w α {\displaystyle w_{\alpha }} {\displaystyle w_{\alpha }}, w β {\displaystyle w_{\beta }} {\displaystyle w_{\beta }} und w γ {\displaystyle w_{\gamma }} {\displaystyle w_{\gamma }} die Längen der von A {\displaystyle A} {\displaystyle A}, B {\displaystyle B} {\displaystyle B} bzw. C {\displaystyle C} {\displaystyle C} ausgehenden Winkelhalbierenden im Dreieck A B C {\displaystyle ABC} {\displaystyle ABC}.

w α = 2 b c cos ⁡ α 2 b + c = 2 F a cos ⁡ β − γ 2 = b c ( b + c − a ) ( a + b + c ) b + c {\displaystyle w_{\alpha }={\frac {2bc\cos {\frac {\alpha }{2}}}{b+c}}={\frac {2F}{a\cos {\frac {\beta -\gamma }{2}}}}={\frac {\sqrt {bc(b+c-a)(a+b+c)}}{b+c}}} {\displaystyle w_{\alpha }={\frac {2bc\cos {\frac {\alpha }{2}}}{b+c}}={\frac {2F}{a\cos {\frac {\beta -\gamma }{2}}}}={\frac {\sqrt {bc(b+c-a)(a+b+c)}}{b+c}}}
w β = 2 c a cos ⁡ β 2 c + a = 2 F b cos ⁡ γ − α 2 = c a ( c + a − b ) ( a + b + c ) c + a {\displaystyle w_{\beta }={\frac {2ca\cos {\frac {\beta }{2}}}{c+a}}={\frac {2F}{b\cos {\frac {\gamma -\alpha }{2}}}}={\frac {\sqrt {ca(c+a-b)(a+b+c)}}{c+a}}} {\displaystyle w_{\beta }={\frac {2ca\cos {\frac {\beta }{2}}}{c+a}}={\frac {2F}{b\cos {\frac {\gamma -\alpha }{2}}}}={\frac {\sqrt {ca(c+a-b)(a+b+c)}}{c+a}}}
w γ = 2 a b cos ⁡ γ 2 a + b = 2 F c cos ⁡ α − β 2 = a b ( a + b − c ) ( a + b + c ) a + b {\displaystyle w_{\gamma }={\frac {2ab\cos {\frac {\gamma }{2}}}{a+b}}={\frac {2F}{c\cos {\frac {\alpha -\beta }{2}}}}={\frac {\sqrt {ab(a+b-c)(a+b+c)}}{a+b}}} {\displaystyle w_{\gamma }={\frac {2ab\cos {\frac {\gamma }{2}}}{a+b}}={\frac {2F}{c\cos {\frac {\alpha -\beta }{2}}}}={\frac {\sqrt {ab(a+b-c)(a+b+c)}}{a+b}}}

Allgemeine Trigonometrie in der Ebene

[Bearbeiten | Quelltext bearbeiten]
Die trigonometrischen Funktionen am Einheitskreis:
C P ¯ = sin ⁡ b {\displaystyle {\overline {CP}}=\sin b} {\displaystyle {\overline {CP}}=\sin b} S P ¯ = cos ⁡ b {\displaystyle {\overline {SP}}=\cos b} {\displaystyle {\overline {SP}}=\cos b}
D T ¯ = tan ⁡ b {\displaystyle {\overline {DT}}=\tan b} {\displaystyle {\overline {DT}}=\tan b} E K ¯ = cot ⁡ b {\displaystyle {\overline {EK}}=\cot b} {\displaystyle {\overline {EK}}=\cot b}
O T ¯ = sec b {\displaystyle {\overline {OT}}=\operatorname {sec} \,b} {\displaystyle {\overline {OT}}=\operatorname {sec} \,b} O K ¯ = csc b {\displaystyle {\overline {OK}}=\operatorname {csc} \,b} {\displaystyle {\overline {OK}}=\operatorname {csc} \,b}

Periodizität

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ x = sin ⁡ ( x + 2 n π ) ; n ∈ Z {\displaystyle \sin x\quad =\quad \sin(x+2n\pi );\quad n\in \mathbb {Z} } {\displaystyle \sin x\quad =\quad \sin(x+2n\pi );\quad n\in \mathbb {Z} }
cos ⁡ x = cos ⁡ ( x + 2 n π ) ; n ∈ Z {\displaystyle \cos x\quad =\quad \cos(x+2n\pi );\quad n\in \mathbb {Z} } {\displaystyle \cos x\quad =\quad \cos(x+2n\pi );\quad n\in \mathbb {Z} }
tan ⁡ x = tan ⁡ ( x + n π ) ; n ∈ Z {\displaystyle \tan x\quad =\quad \tan(x+n\pi );\quad n\in \mathbb {Z} } {\displaystyle \tan x\quad =\quad \tan(x+n\pi );\quad n\in \mathbb {Z} }
cot ⁡ x = cot ⁡ ( x + n π ) ; n ∈ Z {\displaystyle \cot x\quad =\quad \cot(x+n\pi );\quad n\in \mathbb {Z} } {\displaystyle \cot x\quad =\quad \cot(x+n\pi );\quad n\in \mathbb {Z} }

Gegenseitige Darstellung

[Bearbeiten | Quelltext bearbeiten]

Die trigonometrischen Funktionen lassen sich ineinander umwandeln oder gegenseitig darstellen. Es gelten folgende Zusammenhänge:

tan ⁡ x = sin ⁡ x cos ⁡ x {\displaystyle \tan x={\frac {\sin x}{\cos x}}} {\displaystyle \tan x={\frac {\sin x}{\cos x}}}
sin 2 ⁡ x + cos 2 ⁡ x = 1 {\displaystyle \sin ^{2}x+\cos ^{2}x=1} {\displaystyle \sin ^{2}x+\cos ^{2}x=1}      („Trigonometrischer Pythagoras“)
1 + tan 2 ⁡ x = 1 cos 2 ⁡ x = sec 2 ⁡ x {\displaystyle 1+\tan ^{2}x={\frac {1}{\cos ^{2}x}}=\sec ^{2}x} {\displaystyle 1+\tan ^{2}x={\frac {1}{\cos ^{2}x}}=\sec ^{2}x}
1 + cot 2 ⁡ x = 1 sin 2 ⁡ x = csc 2 ⁡ x {\displaystyle 1+\cot ^{2}x={\frac {1}{\sin ^{2}x}}=\csc ^{2}x} {\displaystyle 1+\cot ^{2}x={\frac {1}{\sin ^{2}x}}=\csc ^{2}x}

(Siehe auch den Abschnitt Phasenverschiebungen.)

Mittels dieser Gleichungen lassen sich die drei vorkommenden Funktionen durch eine der beiden anderen darstellen:

sin ⁡ x = 1 − cos 2 ⁡ x {\displaystyle \sin x\;=\;{\sqrt {1-\cos ^{2}x}}} {\displaystyle \sin x\;=\;{\sqrt {1-\cos ^{2}x}}} für x ∈ [ 0 , π [ = [ 0 ∘ , 180 ∘ [ {\displaystyle x\in \left[0,\pi \right[\quad =\quad [0^{\circ },180^{\circ }[} {\displaystyle x\in \left[0,\pi \right[\quad =\quad [0^{\circ },180^{\circ }[}
sin ⁡ x = − 1 − cos 2 ⁡ x {\displaystyle \sin x\;=\;-{\sqrt {1-\cos ^{2}x}}} {\displaystyle \sin x\;=\;-{\sqrt {1-\cos ^{2}x}}} für x ∈ [ π , 2 π [ = [ 180 ∘ , 360 ∘ [ {\displaystyle x\in \left[\pi ,2\pi \right[\quad =\quad [180^{\circ },360^{\circ }[} {\displaystyle x\in \left[\pi ,2\pi \right[\quad =\quad [180^{\circ },360^{\circ }[}
sin ⁡ x = tan ⁡ x 1 + tan 2 ⁡ x {\displaystyle \sin x\;=\;{\frac {\tan x}{\sqrt {1+\tan ^{2}x}}}} {\displaystyle \sin x\;=\;{\frac {\tan x}{\sqrt {1+\tan ^{2}x}}}} für x ∈ [ 0 , π 2 [ ∪ ] 3 π 2 , 2 π [ = [ 0 ∘ , 90 ∘ [ ∪ ] 270 ∘ , 360 ∘ [ {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[} {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[}
sin ⁡ x = − tan ⁡ x 1 + tan 2 ⁡ x {\displaystyle \sin x\;=\;-{\frac {\tan x}{\sqrt {1+\tan ^{2}x}}}} {\displaystyle \sin x\;=\;-{\frac {\tan x}{\sqrt {1+\tan ^{2}x}}}} für x ∈ ] π 2 , 3 π 2 [ = ] 90 ∘ , 270 ∘ [ {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[} {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[}
cos ⁡ x = 1 − sin 2 ⁡ x {\displaystyle \cos x\;=\;{\sqrt {1-\sin ^{2}x}}} {\displaystyle \cos x\;=\;{\sqrt {1-\sin ^{2}x}}} für x ∈ [ 0 , π 2 [ ∪ [ 3 π 2 , 2 π [ = [ 0 ∘ , 90 ∘ [ ∪ [ 270 ∘ , 360 ∘ [ {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left[{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;[270^{\circ },360^{\circ }[} {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left[{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;[270^{\circ },360^{\circ }[}
cos ⁡ x = − 1 − sin 2 ⁡ x {\displaystyle \cos x\;=\;-{\sqrt {1-\sin ^{2}x}}} {\displaystyle \cos x\;=\;-{\sqrt {1-\sin ^{2}x}}} für x ∈ [ π 2 , 3 π 2 [ = [ 90 ∘ , 270 ∘ [ {\displaystyle x\in \left[{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad [90^{\circ },270^{\circ }[} {\displaystyle x\in \left[{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad [90^{\circ },270^{\circ }[}
cos ⁡ x = 1 1 + tan 2 ⁡ x {\displaystyle \cos x={\frac {1}{\sqrt {1+\tan ^{2}x}}}} {\displaystyle \cos x={\frac {1}{\sqrt {1+\tan ^{2}x}}}} für x ∈ [ 0 , π 2 [ ∪ ] 3 π 2 , 2 π [ = [ 0 ∘ , 90 ∘ [ ∪ ] 270 ∘ , 360 ∘ [ {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[} {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[}
cos ⁡ x = − 1 1 + tan 2 ⁡ x {\displaystyle \cos x=-{\frac {1}{\sqrt {1+\tan ^{2}x}}}} {\displaystyle \cos x=-{\frac {1}{\sqrt {1+\tan ^{2}x}}}} für x ∈ ] π 2 , 3 π 2 [ = ] 90 ∘ , 270 ∘ [ {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[} {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[}
tan ⁡ x = 1 − cos 2 ⁡ x cos ⁡ x {\displaystyle \tan x={\frac {\sqrt {1-\cos ^{2}x}}{\cos x}}} {\displaystyle \tan x={\frac {\sqrt {1-\cos ^{2}x}}{\cos x}}} für x ∈ [ 0 , π 2 [ ∪ ] π 2 , π [ = [ 0 ∘ , 90 ∘ [ ∪ ] 90 ∘ , 180 ∘ [ {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {\pi }{2}},\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]90^{\circ },180^{\circ }[} {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {\pi }{2}},\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]90^{\circ },180^{\circ }[}
tan ⁡ x = − 1 − cos 2 ⁡ x cos ⁡ x {\displaystyle \tan x=-{\frac {\sqrt {1-\cos ^{2}x}}{\cos x}}} {\displaystyle \tan x=-{\frac {\sqrt {1-\cos ^{2}x}}{\cos x}}} für x ∈ [ π , 3 π 2 [ ∪ ] 3 π 2 , 2 π [ = [ 180 ∘ , 270 ∘ [ ∪ ] 270 ∘ , 360 ∘ [ {\displaystyle x\in \left[\pi ,{\frac {3\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [180^{\circ },270^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[} {\displaystyle x\in \left[\pi ,{\frac {3\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [180^{\circ },270^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[}
tan ⁡ x = sin ⁡ x 1 − sin 2 ⁡ x {\displaystyle \tan x={\frac {\sin x}{\sqrt {1-\sin ^{2}x}}}} {\displaystyle \tan x={\frac {\sin x}{\sqrt {1-\sin ^{2}x}}}} für x ∈ [ 0 , π 2 [ ∪ ] 3 π 2 , 2 π [ = [ 0 ∘ , 90 ∘ [ ∪ ] 270 ∘ , 360 ∘ [ {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[} {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right[\;\cup \;\left]{\frac {3\pi }{2}},2\pi \right[\quad =\quad [0^{\circ },90^{\circ }[\;\cup \;]270^{\circ },360^{\circ }[}
tan ⁡ x = − sin ⁡ x 1 − sin 2 ⁡ x {\displaystyle \tan x=-{\frac {\sin x}{\sqrt {1-\sin ^{2}x}}}} {\displaystyle \tan x=-{\frac {\sin x}{\sqrt {1-\sin ^{2}x}}}} für x ∈ ] π 2 , 3 π 2 [ = ] 90 ∘ , 270 ∘ [ {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[} {\displaystyle x\in \left]{\frac {\pi }{2}},{\frac {3\pi }{2}}\right[\quad =\quad ]90^{\circ },270^{\circ }[}

Vorzeichen der Winkelfunktionen

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ x > 0 für x ∈ ] 0 ∘ , 180 ∘ [ {\displaystyle \sin x>0\quad {\text{für}}\quad x\in \left]0^{\circ },180^{\circ }\right[} {\displaystyle \sin x>0\quad {\text{für}}\quad x\in \left]0^{\circ },180^{\circ }\right[}
sin ⁡ x < 0 für x ∈ ] 180 ∘ , 360 ∘ [ {\displaystyle \sin x<0\quad {\text{für}}\quad x\in \left]180^{\circ },360^{\circ }\right[} {\displaystyle \sin x<0\quad {\text{für}}\quad x\in \left]180^{\circ },360^{\circ }\right[}
cos ⁡ x > 0 für x ∈ [ 0 ∘ , 90 ∘ [ ∪ ] 270 ∘ , 360 ∘ ] {\displaystyle \cos x>0\quad {\text{für}}\quad x\in \left[0^{\circ },90^{\circ }\right[\cup \left]270^{\circ },360^{\circ }\right]} {\displaystyle \cos x>0\quad {\text{für}}\quad x\in \left[0^{\circ },90^{\circ }\right[\cup \left]270^{\circ },360^{\circ }\right]}
cos ⁡ x < 0 für x ∈ ] 90 ∘ , 270 ∘ [ {\displaystyle \cos x<0\quad {\text{für}}\quad x\in \left]90^{\circ },270^{\circ }\right[} {\displaystyle \cos x<0\quad {\text{für}}\quad x\in \left]90^{\circ },270^{\circ }\right[}
tan ⁡ x > 0 für x ∈ ] 0 ∘ , 90 ∘ [ ∪ ] 180 ∘ , 270 ∘ [ {\displaystyle \tan x>0\quad {\text{für}}\quad x\in \left]0^{\circ },90^{\circ }\right[\cup \left]180^{\circ },270^{\circ }\right[} {\displaystyle \tan x>0\quad {\text{für}}\quad x\in \left]0^{\circ },90^{\circ }\right[\cup \left]180^{\circ },270^{\circ }\right[}
tan ⁡ x < 0 für x ∈ ] 90 ∘ , 180 ∘ [ ∪ ] 270 ∘ , 360 ∘ [ {\displaystyle \tan x<0\quad {\text{für}}\quad x\in \left]90^{\circ },180^{\circ }\right[\cup \left]270^{\circ },360^{\circ }\right[} {\displaystyle \tan x<0\quad {\text{für}}\quad x\in \left]90^{\circ },180^{\circ }\right[\cup \left]270^{\circ },360^{\circ }\right[}

Die Vorzeichen von cot {\displaystyle \cot } {\displaystyle \cot }, sec {\displaystyle \sec } {\displaystyle \sec } und csc {\displaystyle \csc } {\displaystyle \csc } stimmen überein mit denen ihrer Kehrwertfunktionen tan {\displaystyle \tan } {\displaystyle \tan }, cos {\displaystyle \cos } {\displaystyle \cos } bzw. sin {\displaystyle \sin } {\displaystyle \sin }.

Wichtige Funktionswerte

[Bearbeiten | Quelltext bearbeiten]
Darstellung wichtiger Funktionswerte von Kosinus (1. Klammerwert) und Sinus (2. Klammerwert) auf dem Einheitskreis
α {\displaystyle \alpha } {\displaystyle \alpha } α {\displaystyle \alpha } {\displaystyle \alpha } (rad) sin ⁡ α {\displaystyle \sin \alpha } {\displaystyle \sin \alpha } cos ⁡ α {\displaystyle \cos \alpha } {\displaystyle \cos \alpha } tan ⁡ α {\displaystyle \tan \alpha } {\displaystyle \tan \alpha } cot ⁡ α {\displaystyle \cot \alpha } {\displaystyle \cot \alpha }
0 ∘ {\displaystyle 0^{\circ }} {\displaystyle 0^{\circ }} 0 {\displaystyle \,0} {\displaystyle \,0} 0 {\displaystyle \,0} {\displaystyle \,0} 1 {\displaystyle \,1} {\displaystyle \,1} 0 {\displaystyle \,0} {\displaystyle \,0} ± ∞ {\displaystyle \pm \infty } {\displaystyle \pm \infty }
15 ∘ {\displaystyle 15^{\circ }} {\displaystyle 15^{\circ }} π 12 {\displaystyle {\tfrac {\pi }{12}}} {\displaystyle {\tfrac {\pi }{12}}} 1 4 ( 6 − 2 ) {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})} {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})} 1 4 ( 6 + 2 ) {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})} {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})} 2 − 3 {\displaystyle 2-{\sqrt {3}}} {\displaystyle 2-{\sqrt {3}}} 2 + 3 {\displaystyle 2+{\sqrt {3}}} {\displaystyle 2+{\sqrt {3}}}
18 ∘ {\displaystyle 18^{\circ }} {\displaystyle 18^{\circ }} π 10 {\displaystyle {\tfrac {\pi }{10}}} {\displaystyle {\tfrac {\pi }{10}}} 1 4 ( 5 − 1 ) {\displaystyle {\tfrac {1}{4}}\left({\sqrt {5}}-1\right)} {\displaystyle {\tfrac {1}{4}}\left({\sqrt {5}}-1\right)} 1 4 10 + 2 5 {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} 1 5 25 − 10 5 {\displaystyle {\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}} 5 + 2 5 {\displaystyle {\sqrt {5+2{\sqrt {5}}}}} {\displaystyle {\sqrt {5+2{\sqrt {5}}}}}
30 ∘ {\displaystyle 30^{\circ }} {\displaystyle 30^{\circ }} π 6 {\displaystyle {\tfrac {\pi }{6}}} {\displaystyle {\tfrac {\pi }{6}}} 1 2 {\displaystyle {\tfrac {1}{2}}} {\displaystyle {\tfrac {1}{2}}} 1 2 3 {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} 1 3 3 {\displaystyle {\tfrac {1}{3}}{\sqrt {3}}} {\displaystyle {\tfrac {1}{3}}{\sqrt {3}}} 3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}}
36 ∘ {\displaystyle 36^{\circ }} {\displaystyle 36^{\circ }} π 5 {\displaystyle {\tfrac {\pi }{5}}} {\displaystyle {\tfrac {\pi }{5}}} 1 4 10 − 2 5 {\displaystyle {\tfrac {1}{4}}{\sqrt {10-2{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{4}}{\sqrt {10-2{\sqrt {5}}}}} 1 4 ( 1 + 5 ) {\displaystyle {\tfrac {1}{4}}\left(1+{\sqrt {5}}\right)} {\displaystyle {\tfrac {1}{4}}\left(1+{\sqrt {5}}\right)} 5 − 2 5 {\displaystyle {\sqrt {5-2{\sqrt {5}}}}} {\displaystyle {\sqrt {5-2{\sqrt {5}}}}} 1 5 25 + 10 5 {\displaystyle {\tfrac {1}{5}}{\sqrt {25+10{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{5}}{\sqrt {25+10{\sqrt {5}}}}}
45 ∘ {\displaystyle 45^{\circ }} {\displaystyle 45^{\circ }} π 4 {\displaystyle {\tfrac {\pi }{4}}} {\displaystyle {\tfrac {\pi }{4}}} 1 2 2 {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} 1 2 2 {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} 1 {\displaystyle 1\,} {\displaystyle 1\,} 1 {\displaystyle 1\,} {\displaystyle 1\,}
54 ∘ {\displaystyle 54^{\circ }} {\displaystyle 54^{\circ }} 3 π 10 {\displaystyle {\tfrac {3\pi }{10}}} {\displaystyle {\tfrac {3\pi }{10}}} 1 4 ( 1 + 5 ) {\displaystyle {\tfrac {1}{4}}\left(1+{\sqrt {5}}\right)} {\displaystyle {\tfrac {1}{4}}\left(1+{\sqrt {5}}\right)} 1 4 10 − 2 5 {\displaystyle {\tfrac {1}{4}}{\sqrt {10-2{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{4}}{\sqrt {10-2{\sqrt {5}}}}} 1 5 25 + 10 5 {\displaystyle {\tfrac {1}{5}}{\sqrt {25+10{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{5}}{\sqrt {25+10{\sqrt {5}}}}} 5 − 2 5 {\displaystyle {\sqrt {5-2{\sqrt {5}}}}} {\displaystyle {\sqrt {5-2{\sqrt {5}}}}}
60 ∘ {\displaystyle 60^{\circ }} {\displaystyle 60^{\circ }} π 3 {\displaystyle {\tfrac {\pi }{3}}} {\displaystyle {\tfrac {\pi }{3}}} 1 2 3 {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} 1 2 {\displaystyle {\tfrac {1}{2}}} {\displaystyle {\tfrac {1}{2}}} 3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}} 1 3 3 {\displaystyle {\tfrac {1}{3}}{\sqrt {3}}} {\displaystyle {\tfrac {1}{3}}{\sqrt {3}}}
72 ∘ {\displaystyle 72^{\circ }} {\displaystyle 72^{\circ }} 2 π 5 {\displaystyle {\tfrac {2\pi }{5}}} {\displaystyle {\tfrac {2\pi }{5}}} 1 4 10 + 2 5 {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} 1 4 ( 5 − 1 ) {\displaystyle {\tfrac {1}{4}}\left({\sqrt {5}}-1\right)} {\displaystyle {\tfrac {1}{4}}\left({\sqrt {5}}-1\right)} 5 + 2 5 {\displaystyle {\sqrt {5+2{\sqrt {5}}}}} {\displaystyle {\sqrt {5+2{\sqrt {5}}}}} 1 5 25 − 10 5 {\displaystyle {\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}}
75 ∘ {\displaystyle 75^{\circ }} {\displaystyle 75^{\circ }} 5 π 12 {\displaystyle {\tfrac {5\pi }{12}}} {\displaystyle {\tfrac {5\pi }{12}}} 1 4 ( 6 + 2 ) {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})} {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})} 1 4 ( 6 − 2 ) {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})} {\displaystyle {\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})} 2 + 3 {\displaystyle 2+{\sqrt {3}}} {\displaystyle 2+{\sqrt {3}}} 2 − 3 {\displaystyle 2-{\sqrt {3}}} {\displaystyle 2-{\sqrt {3}}}
90 ∘ {\displaystyle 90^{\circ }} {\displaystyle 90^{\circ }} π 2 {\displaystyle {\tfrac {\pi }{2}}} {\displaystyle {\tfrac {\pi }{2}}} 1 {\displaystyle \,1} {\displaystyle \,1} 0 {\displaystyle \,0} {\displaystyle \,0} ± ∞ {\displaystyle \pm \infty } {\displaystyle \pm \infty } 0 {\displaystyle \,0} {\displaystyle \,0}
108 ∘ {\displaystyle 108^{\circ }} {\displaystyle 108^{\circ }} 3 π 5 {\displaystyle {\tfrac {3\pi }{5}}} {\displaystyle {\tfrac {3\pi }{5}}} 1 4 10 + 2 5 {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} {\displaystyle {\tfrac {1}{4}}{\sqrt {10+2{\sqrt {5}}}}} 1 4 ( 1 − 5 ) {\displaystyle {\tfrac {1}{4}}\left(1-{\sqrt {5}}\right)} {\displaystyle {\tfrac {1}{4}}\left(1-{\sqrt {5}}\right)} − 5 + 2 5 {\displaystyle -{\sqrt {5+2{\sqrt {5}}}}} {\displaystyle -{\sqrt {5+2{\sqrt {5}}}}} − 1 5 25 − 10 5 {\displaystyle -{\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}} {\displaystyle -{\tfrac {1}{5}}{\sqrt {25-10{\sqrt {5}}}}}
120 ∘ {\displaystyle 120^{\circ }} {\displaystyle 120^{\circ }} 2 π 3 {\displaystyle {\tfrac {2\pi }{3}}} {\displaystyle {\tfrac {2\pi }{3}}} 1 2 3 {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {3}}} − 1 2 {\displaystyle -{\tfrac {1}{2}}} {\displaystyle -{\tfrac {1}{2}}} − 3 {\displaystyle -{\sqrt {3}}} {\displaystyle -{\sqrt {3}}} − 1 3 3 {\displaystyle -{\tfrac {1}{3}}{\sqrt {3}}} {\displaystyle -{\tfrac {1}{3}}{\sqrt {3}}}
135 ∘ {\displaystyle 135^{\circ }} {\displaystyle 135^{\circ }} 3 π 4 {\displaystyle {\tfrac {3\pi }{4}}} {\displaystyle {\tfrac {3\pi }{4}}} 1 2 2 {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} {\displaystyle {\tfrac {1}{2}}{\sqrt {2}}} − 1 2 2 {\displaystyle -{\tfrac {1}{2}}{\sqrt {2}}} {\displaystyle -{\tfrac {1}{2}}{\sqrt {2}}} − 1 {\displaystyle -1\,} {\displaystyle -1\,} − 1 {\displaystyle -1\,} {\displaystyle -1\,}
180 ∘ {\displaystyle 180^{\circ }} {\displaystyle 180^{\circ }} π {\displaystyle \pi \,} {\displaystyle \pi \,} 0 {\displaystyle \,0} {\displaystyle \,0} − 1 {\displaystyle \,-1} {\displaystyle \,-1} 0 {\displaystyle \,0} {\displaystyle \,0} ± ∞ {\displaystyle \pm \infty } {\displaystyle \pm \infty }
270 ∘ {\displaystyle 270^{\circ }} {\displaystyle 270^{\circ }} 3 π 2 {\displaystyle {\tfrac {3\pi }{2}}} {\displaystyle {\tfrac {3\pi }{2}}} − 1 {\displaystyle \,-1} {\displaystyle \,-1} 0 {\displaystyle \,0} {\displaystyle \,0} ± ∞ {\displaystyle \pm \infty } {\displaystyle \pm \infty } 0 {\displaystyle \,0} {\displaystyle \,0}
360 ∘ {\displaystyle 360^{\circ }} {\displaystyle 360^{\circ }} 2 π {\displaystyle 2\pi } {\displaystyle 2\pi } 0 {\displaystyle \,0} {\displaystyle \,0} 1 {\displaystyle \,1} {\displaystyle \,1} 0 {\displaystyle \,0} {\displaystyle \,0} ± ∞ {\displaystyle \pm \infty } {\displaystyle \pm \infty }

Mit Hilfe der Additionstheoreme sind noch viele weitere Werte durch algebraische Ausdrücke (ggfs. mit verschachtelten Quadratwurzeln) darstellbar, zum Beispiel alle ganzzahligen Vielfachen von 3 ∘ {\displaystyle 3^{\circ }} {\displaystyle 3^{\circ }} durch die Subtraktionen: 18 ∘ − 15 ∘ {\displaystyle 18^{\circ }-15^{\circ }} {\displaystyle 18^{\circ }-15^{\circ }}, 36 ∘ − 30 ∘ {\displaystyle 36^{\circ }-30^{\circ }} {\displaystyle 36^{\circ }-30^{\circ }}, 45 ∘ − 36 ∘ {\displaystyle 45^{\circ }-36^{\circ }} {\displaystyle 45^{\circ }-36^{\circ }} usw.[2]

Symmetrien

[Bearbeiten | Quelltext bearbeiten]

Die trigonometrischen Funktionen haben einfache Symmetrien:

sin ⁡ ( − x ) = − sin ⁡ ( x ) cos ⁡ ( − x ) = + cos ⁡ ( x ) tan ⁡ ( − x ) = − tan ⁡ ( x ) cot ⁡ ( − x ) = − cot ⁡ ( x ) sec ⁡ ( − x ) = + sec ⁡ ( x ) csc ⁡ ( − x ) = − csc ⁡ ( x ) {\displaystyle {\begin{aligned}\sin(-x)&=-\sin(x)\\\cos(-x)&=+\cos(x)\\\tan(-x)&=-\tan(x)\\\cot(-x)&=-\cot(x)\\\sec(-x)&=+\sec(x)\\\csc(-x)&=-\csc(x)\\\end{aligned}}} {\displaystyle {\begin{aligned}\sin(-x)&=-\sin(x)\\\cos(-x)&=+\cos(x)\\\tan(-x)&=-\tan(x)\\\cot(-x)&=-\cot(x)\\\sec(-x)&=+\sec(x)\\\csc(-x)&=-\csc(x)\\\end{aligned}}}

Phasenverschiebungen

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ ( x + π 2 ) = cos ⁡ x bzw. sin ⁡ ( x + 90 ∘ ) = cos ⁡ x {\displaystyle \sin \left(x+{\frac {\pi }{2}}\right)=\cos x\;\quad {\text{bzw.}}\quad \sin \left(x+90^{\circ }\right)=\cos x\;} {\displaystyle \sin \left(x+{\frac {\pi }{2}}\right)=\cos x\;\quad {\text{bzw.}}\quad \sin \left(x+90^{\circ }\right)=\cos x\;}
cos ⁡ ( x + π 2 ) = − sin ⁡ x bzw. cos ⁡ ( x + 90 ∘ ) = − sin ⁡ x {\displaystyle \cos \left(x+{\frac {\pi }{2}}\right)=-\sin x\;\quad {\text{bzw.}}\quad \cos \left(x+90^{\circ }\right)=-\sin x\;} {\displaystyle \cos \left(x+{\frac {\pi }{2}}\right)=-\sin x\;\quad {\text{bzw.}}\quad \cos \left(x+90^{\circ }\right)=-\sin x\;}
tan ⁡ ( x + π 2 ) = − cot ⁡ x bzw. tan ⁡ ( x + 90 ∘ ) = − cot ⁡ x {\displaystyle \tan \left(x+{\frac {\pi }{2}}\right)=-\cot x\;\quad {\text{bzw.}}\quad \tan \left(x+90^{\circ }\right)=-\cot x\;} {\displaystyle \tan \left(x+{\frac {\pi }{2}}\right)=-\cot x\;\quad {\text{bzw.}}\quad \tan \left(x+90^{\circ }\right)=-\cot x\;}
cot ⁡ ( x + π 2 ) = − tan ⁡ x bzw. cot ⁡ ( x + 90 ∘ ) = − tan ⁡ x {\displaystyle \cot \left(x+{\frac {\pi }{2}}\right)=-\tan x\;\quad {\text{bzw.}}\quad \cot \left(x+90^{\circ }\right)=-\tan x\;} {\displaystyle \cot \left(x+{\frac {\pi }{2}}\right)=-\tan x\;\quad {\text{bzw.}}\quad \cot \left(x+90^{\circ }\right)=-\tan x\;}

Rückführung auf spitze Winkel

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ x   = sin ⁡ ( π − x ) bzw. sin ⁡ x   = sin ⁡ ( 180 ∘ − x ) {\displaystyle \sin x\ \;=\;\;\;\sin \left(\pi -x\right)\,\quad {\text{bzw.}}\quad \sin x\ =\;\;\;\sin \left(180^{\circ }-x\right)} {\displaystyle \sin x\ \;=\;\;\;\sin \left(\pi -x\right)\,\quad {\text{bzw.}}\quad \sin x\ =\;\;\;\sin \left(180^{\circ }-x\right)}
cos ⁡ x   = − cos ⁡ ( π − x ) bzw. cos ⁡ x   = − cos ⁡ ( 180 ∘ − x ) {\displaystyle \cos x\ \,=-\cos \left(\pi -x\right)\quad {\text{bzw.}}\quad \cos x\ =-\cos \left(180^{\circ }-x\right)} {\displaystyle \cos x\ \,=-\cos \left(\pi -x\right)\quad {\text{bzw.}}\quad \cos x\ =-\cos \left(180^{\circ }-x\right)}
tan ⁡ x   = − tan ⁡ ( π − x ) bzw. tan ⁡ x   = − tan ⁡ ( 180 ∘ − x ) {\displaystyle \tan x\ =-\tan \left(\pi -x\right)\quad {\text{bzw.}}\quad \tan x\ =-\tan \left(180^{\circ }-x\right)} {\displaystyle \tan x\ =-\tan \left(\pi -x\right)\quad {\text{bzw.}}\quad \tan x\ =-\tan \left(180^{\circ }-x\right)}

Darstellung durch den Tangens des halben Winkels

[Bearbeiten | Quelltext bearbeiten]

Mit der Bezeichnung t = tan ⁡ x 2 {\displaystyle t=\tan {\tfrac {x}{2}}} {\displaystyle t=\tan {\tfrac {x}{2}}} gelten die folgenden Beziehungen für beliebiges x {\displaystyle x} {\displaystyle x}

sin ⁡ x = 2 t 1 + t 2 , {\displaystyle \sin x={\frac {2t}{1+t^{2}}},} {\displaystyle \sin x={\frac {2t}{1+t^{2}}},}   cos ⁡ x = 1 − t 2 1 + t 2 , {\displaystyle \cos x={\frac {1-t^{2}}{1+t^{2}}},} {\displaystyle \cos x={\frac {1-t^{2}}{1+t^{2}}},}
tan ⁡ x = 2 t 1 − t 2 , {\displaystyle \tan x={\frac {2t}{1-t^{2}}},} {\displaystyle \tan x={\frac {2t}{1-t^{2}}},}   cot ⁡ x = 1 − t 2 2 t , {\displaystyle \cot x={\frac {1-t^{2}}{2t}},} {\displaystyle \cot x={\frac {1-t^{2}}{2t}},}
sec ⁡ x = 1 + t 2 1 − t 2 , {\displaystyle \sec x={\frac {1+t^{2}}{1-t^{2}}},} {\displaystyle \sec x={\frac {1+t^{2}}{1-t^{2}}},}   csc ⁡ x = 1 + t 2 2 t . {\displaystyle \csc x={\frac {1+t^{2}}{2t}}.} {\displaystyle \csc x={\frac {1+t^{2}}{2t}}.}

Additionstheoreme

[Bearbeiten | Quelltext bearbeiten]
Figur 1
Figur 2

Für Sinus und Kosinus lassen sich die Additionstheoreme aus der Verkettung zweier Drehungen um den Winkel x {\displaystyle x} {\displaystyle x} bzw. y {\displaystyle y} {\displaystyle y} herleiten. Das ist elementargeometrisch möglich; sehr viel einfacher ist das koordinatenweise Ablesen der Formeln aus dem Produkt zweier Drehmatrizen der Ebene R 2 {\displaystyle \mathbb {R} ^{2}} {\displaystyle \mathbb {R} ^{2}}. Alternativ folgen die Additionstheoreme aus der Anwendung der Eulerschen Formel auf die Beziehung e i ( x + y ) = e i x ⋅ e i y {\displaystyle \textstyle e^{i(x+y)}=e^{ix}\cdot e^{iy}} {\displaystyle \textstyle e^{i(x+y)}=e^{ix}\cdot e^{iy}}. Die Ergebnisse für das Doppelvorzeichen ergeben sich durch Anwendung der Symmetrien.[3]

sin ⁡ ( x ± y ) = sin ⁡ x ⋅ cos ⁡ y ± cos ⁡ x ⋅ sin ⁡ y {\displaystyle \sin(x\pm y)=\sin x\cdot \cos y\pm \cos x\cdot \sin y} {\displaystyle \sin(x\pm y)=\sin x\cdot \cos y\pm \cos x\cdot \sin y}[4]
cos ⁡ ( x ± y ) = cos ⁡ x ⋅ cos ⁡ y ∓ sin ⁡ x ⋅ sin ⁡ y {\displaystyle \cos(x\pm y)=\cos x\cdot \cos y\mp \sin x\cdot \sin y} {\displaystyle \cos(x\pm y)=\cos x\cdot \cos y\mp \sin x\cdot \sin y}[4]

Geometrische Herleitungen sind in Figur 1 und Figur 2 für Winkel α {\displaystyle \alpha } {\displaystyle \alpha } und β {\displaystyle \beta } {\displaystyle \beta } zwischen 0° und 90° veranschaulicht.[5]

Zu Figur 1:

sin ⁡ ( α + β ) = sin ⁡ α ⋅ cos ⁡ β + cos ⁡ α ⋅ sin ⁡ β {\displaystyle \sin(\alpha +\beta )=\sin \alpha \cdot \cos \beta +\cos \alpha \cdot \sin \beta } {\displaystyle \sin(\alpha +\beta )=\sin \alpha \cdot \cos \beta +\cos \alpha \cdot \sin \beta }
cos ⁡ ( α + β ) = cos ⁡ α ⋅ cos ⁡ β − sin ⁡ α ⋅ sin ⁡ β {\displaystyle \cos(\alpha +\beta )=\cos \alpha \cdot \cos \beta -\sin \alpha \cdot \sin \beta } {\displaystyle \cos(\alpha +\beta )=\cos \alpha \cdot \cos \beta -\sin \alpha \cdot \sin \beta }

Zu Figur 2:

sin ⁡ ( α − β ) = sin ⁡ α ⋅ cos ⁡ β − cos ⁡ α ⋅ sin ⁡ β {\displaystyle \sin(\alpha -\beta )=\sin \alpha \cdot \cos \beta -\cos \alpha \cdot \sin \beta } {\displaystyle \sin(\alpha -\beta )=\sin \alpha \cdot \cos \beta -\cos \alpha \cdot \sin \beta }
cos ⁡ ( α − β ) = cos ⁡ α ⋅ cos ⁡ β + sin ⁡ α ⋅ sin ⁡ β {\displaystyle \cos(\alpha -\beta )=\cos \alpha \cdot \cos \beta +\sin \alpha \cdot \sin \beta } {\displaystyle \cos(\alpha -\beta )=\cos \alpha \cdot \cos \beta +\sin \alpha \cdot \sin \beta }

Durch Erweiterung mit 1 cos ⁡ x cos ⁡ y {\displaystyle \textstyle {1 \over \cos x\cos y}} {\displaystyle \textstyle {1 \over \cos x\cos y}} bzw. 1 sin ⁡ x sin ⁡ y {\displaystyle \textstyle {1 \over \sin x\sin y}} {\displaystyle \textstyle {1 \over \sin x\sin y}} und Vereinfachung des Doppelbruchs erhält man

tan ⁡ ( x ± y ) = sin ⁡ ( x ± y ) cos ⁡ ( x ± y ) = tan ⁡ x ± tan ⁡ y 1 ∓ tan ⁡ x tan ⁡ y {\displaystyle \tan(x\pm y)={\frac {\sin(x\pm y)}{\cos(x\pm y)}}={\frac {\tan x\pm \tan y}{1\mp \tan x\;\tan y}}} {\displaystyle \tan(x\pm y)={\frac {\sin(x\pm y)}{\cos(x\pm y)}}={\frac {\tan x\pm \tan y}{1\mp \tan x\;\tan y}}},
cot ⁡ ( x ± y ) = cos ⁡ ( x ± y ) sin ⁡ ( x ± y ) = cot ⁡ x cot ⁡ y ∓ 1 cot ⁡ y ± cot ⁡ x {\displaystyle \cot(x\pm y)={\frac {\cos(x\pm y)}{\sin(x\pm y)}}={\frac {\cot x\cot y\mp 1}{\cot y\pm \cot x}}} {\displaystyle \cot(x\pm y)={\frac {\cos(x\pm y)}{\sin(x\pm y)}}={\frac {\cot x\cot y\mp 1}{\cot y\pm \cot x}}}.

Für x = y {\displaystyle x=y} {\displaystyle x=y} folgen hieraus die Doppelwinkelfunktionen, für y = π / 2 {\displaystyle y=\pi /2} {\displaystyle y=\pi /2} die Phasenverschiebungen.

sin ⁡ ( x + y ) ⋅ sin ⁡ ( x − y ) = cos 2 ⁡ y − cos 2 ⁡ x = sin 2 ⁡ x − sin 2 ⁡ y {\displaystyle \sin(x+y)\cdot \sin(x-y)=\cos ^{2}y-\cos ^{2}x=\sin ^{2}x-\sin ^{2}y} {\displaystyle \sin(x+y)\cdot \sin(x-y)=\cos ^{2}y-\cos ^{2}x=\sin ^{2}x-\sin ^{2}y}
cos ⁡ ( x + y ) ⋅ cos ⁡ ( x − y ) = cos 2 ⁡ y − sin 2 ⁡ x = cos 2 ⁡ x − sin 2 ⁡ y {\displaystyle \cos(x+y)\cdot \cos(x-y)=\cos ^{2}y-\sin ^{2}x=\cos ^{2}x-\sin ^{2}y} {\displaystyle \cos(x+y)\cdot \cos(x-y)=\cos ^{2}y-\sin ^{2}x=\cos ^{2}x-\sin ^{2}y}

Additionstheoreme für Arkusfunktionen

[Bearbeiten | Quelltext bearbeiten]

Für die Arkusfunktionen gelten folgende Additionstheoreme[6]

Summanden Summenformel Gültigkeitsbereich
arcsin ⁡ x + arcsin ⁡ y = {\displaystyle \arcsin x+\arcsin y=} {\displaystyle \arcsin x+\arcsin y=} arcsin ⁡ ( x 1 − y 2 + y 1 − x 2 ) {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} x y ≤ 0 {\displaystyle xy\leq 0} {\displaystyle xy\leq 0} oder x 2 + y 2 ≤ 1 {\displaystyle x^{2}+y^{2}\leq 1} {\displaystyle x^{2}+y^{2}\leq 1}
π − arcsin ⁡ ( x 1 − y 2 + y 1 − x 2 ) {\displaystyle \pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} {\displaystyle \pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} x > 0 {\displaystyle x>0} {\displaystyle x>0} und y > 0 {\displaystyle y>0} {\displaystyle y>0} und x 2 + y 2 > 1 {\displaystyle x^{2}+y^{2}>1} {\displaystyle x^{2}+y^{2}>1}
− π − arcsin ⁡ ( x 1 − y 2 + y 1 − x 2 ) {\displaystyle -\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} {\displaystyle -\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right)} x < 0 {\displaystyle x<0} {\displaystyle x<0} und y < 0 {\displaystyle y<0} {\displaystyle y<0} und x 2 + y 2 > 1 {\displaystyle x^{2}+y^{2}>1} {\displaystyle x^{2}+y^{2}>1}
arcsin ⁡ x − arcsin ⁡ y = {\displaystyle \arcsin x-\arcsin y=} {\displaystyle \arcsin x-\arcsin y=} arcsin ⁡ ( x 1 − y 2 − y 1 − x 2 ) {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} x y ≥ 0 {\displaystyle xy\geq 0} {\displaystyle xy\geq 0} oder x 2 + y 2 ≤ 1 {\displaystyle x^{2}+y^{2}\leq 1} {\displaystyle x^{2}+y^{2}\leq 1}
π − arcsin ⁡ ( x 1 − y 2 − y 1 − x 2 ) {\displaystyle \pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} {\displaystyle \pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} x > 0 {\displaystyle x>0} {\displaystyle x>0} und y < 0 {\displaystyle y<0} {\displaystyle y<0} und x 2 + y 2 > 1 {\displaystyle x^{2}+y^{2}>1} {\displaystyle x^{2}+y^{2}>1}
− π − arcsin ⁡ ( x 1 − y 2 − y 1 − x 2 ) {\displaystyle -\pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} {\displaystyle -\pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right)} x < 0 {\displaystyle x<0} {\displaystyle x<0} und y > 0 {\displaystyle y>0} {\displaystyle y>0} und x 2 + y 2 > 1 {\displaystyle x^{2}+y^{2}>1} {\displaystyle x^{2}+y^{2}>1}
arccos ⁡ x + arccos ⁡ y = {\displaystyle \arccos x+\arccos y=} {\displaystyle \arccos x+\arccos y=} arccos ⁡ ( x y − 1 − x 2 1 − y 2 ) {\displaystyle \arccos \left(xy-{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} {\displaystyle \arccos \left(xy-{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} x + y ≥ 0 {\displaystyle x+y\geq 0} {\displaystyle x+y\geq 0}
2 π − arccos ⁡ ( x y − 1 − x 2 1 − y 2 ) {\displaystyle 2\pi -\arccos \left(xy-{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} {\displaystyle 2\pi -\arccos \left(xy-{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} x + y < 0 {\displaystyle x+y<0} {\displaystyle x+y<0}
arccos ⁡ x − arccos ⁡ y = {\displaystyle \arccos x-\arccos y=} {\displaystyle \arccos x-\arccos y=} − arccos ⁡ ( x y + 1 − x 2 1 − y 2 ) {\displaystyle -\arccos \left(xy+{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} {\displaystyle -\arccos \left(xy+{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} x ≥ y {\displaystyle x\geq y} {\displaystyle x\geq y}
arccos ⁡ ( x y + 1 − x 2 1 − y 2 ) {\displaystyle \arccos \left(xy+{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} {\displaystyle \arccos \left(xy+{\sqrt {1-x^{2}}}{\sqrt {1-y^{2}}}\right)} x < y {\displaystyle x<y} {\displaystyle x<y}
arctan ⁡ x + arctan ⁡ y = {\displaystyle \arctan x+\arctan y=} {\displaystyle \arctan x+\arctan y=} arctan ⁡ ( x + y 1 − x y ) {\displaystyle \arctan \left({\frac {x+y}{1-xy}}\right)} {\displaystyle \arctan \left({\frac {x+y}{1-xy}}\right)} x y < 1 {\displaystyle xy<1} {\displaystyle xy<1}
π + arctan ⁡ ( x + y 1 − x y ) {\displaystyle \pi +\arctan \left({\frac {x+y}{1-xy}}\right)} {\displaystyle \pi +\arctan \left({\frac {x+y}{1-xy}}\right)} x > 0 {\displaystyle x>0} {\displaystyle x>0} und x y > 1 {\displaystyle xy>1} {\displaystyle xy>1}
− π + arctan ⁡ ( x + y 1 − x y ) {\displaystyle -\pi +\arctan \left({\frac {x+y}{1-xy}}\right)} {\displaystyle -\pi +\arctan \left({\frac {x+y}{1-xy}}\right)} x < 0 {\displaystyle x<0} {\displaystyle x<0} und x y > 1 {\displaystyle xy>1} {\displaystyle xy>1}
arctan ⁡ x − arctan ⁡ y = {\displaystyle \arctan x-\arctan y=} {\displaystyle \arctan x-\arctan y=} arctan ⁡ ( x − y 1 + x y ) {\displaystyle \arctan \left({\frac {x-y}{1+xy}}\right)} {\displaystyle \arctan \left({\frac {x-y}{1+xy}}\right)} x y > − 1 {\displaystyle xy>-1} {\displaystyle xy>-1}
π + arctan ⁡ ( x − y 1 + x y ) {\displaystyle \pi +\arctan \left({\frac {x-y}{1+xy}}\right)} {\displaystyle \pi +\arctan \left({\frac {x-y}{1+xy}}\right)} x > 0 {\displaystyle x>0} {\displaystyle x>0} und x y < − 1 {\displaystyle xy<-1} {\displaystyle xy<-1}
− π + arctan ⁡ ( x − y 1 + x y ) {\displaystyle -\pi +\arctan \left({\frac {x-y}{1+xy}}\right)} {\displaystyle -\pi +\arctan \left({\frac {x-y}{1+xy}}\right)} x < 0 {\displaystyle x<0} {\displaystyle x<0} und x y < − 1 {\displaystyle xy<-1} {\displaystyle xy<-1}

Doppelwinkelfunktionen

[Bearbeiten | Quelltext bearbeiten]
Figur 3
sin ⁡ ( 2 x ) = 2 sin ⁡ x ⋅ cos ⁡ x = 2 tan ⁡ x 1 + tan 2 ⁡ x {\displaystyle \sin(2x)=2\sin x\cdot \;\cos x={\frac {2\tan x}{1+\tan ^{2}x}}} {\displaystyle \sin(2x)=2\sin x\cdot \;\cos x={\frac {2\tan x}{1+\tan ^{2}x}}}

Eine geometrische Herleitung ist in Figur 3 für Winkel α {\displaystyle \alpha } {\displaystyle \alpha } und β {\displaystyle \beta } {\displaystyle \beta } zwischen 0° und 90° veranschaulicht.[7]

Zu Figur 3:

Aus der Berechnung der Flächeninhalte der beiden grauen Dreiecke ergibt sich 1 2 ⋅ 2 sin ⁡ α ⋅ 2 cos ⁡ α = 1 2 ⋅ 2 ⋅ sin ⁡ ( 2 α ) {\displaystyle {\frac {1}{2}}\cdot 2\sin \alpha \cdot 2\cos \alpha ={\frac {1}{2}}\cdot 2\cdot \sin(2\alpha )} {\displaystyle {\frac {1}{2}}\cdot 2\sin \alpha \cdot 2\cos \alpha ={\frac {1}{2}}\cdot 2\cdot \sin(2\alpha )}. Hieraus folgt 2 sin ⁡ α ⋅ cos ⁡ α = sin ⁡ ( 2 α ) {\displaystyle 2\sin \alpha \cdot \cos \alpha =\sin(2\alpha )} {\displaystyle 2\sin \alpha \cdot \cos \alpha =\sin(2\alpha )}.

Weitere Beziehungen:

cos ⁡ ( 2 x ) = cos 2 ⁡ x − sin 2 ⁡ x = 1 − 2 sin 2 ⁡ x = 2 cos 2 ⁡ x − 1 = 1 − tan 2 ⁡ x 1 + tan 2 ⁡ x {\displaystyle \cos(2x)=\cos ^{2}x-\sin ^{2}x=1-2\sin ^{2}x=2\cos ^{2}x-1={\frac {1-\tan ^{2}x}{1+\tan ^{2}x}}} {\displaystyle \cos(2x)=\cos ^{2}x-\sin ^{2}x=1-2\sin ^{2}x=2\cos ^{2}x-1={\frac {1-\tan ^{2}x}{1+\tan ^{2}x}}}
tan ⁡ ( 2 x ) = 2 tan ⁡ x 1 − tan 2 ⁡ x = 2 cot ⁡ x − tan ⁡ x {\displaystyle \tan(2x)={\frac {2\tan x}{1-\tan ^{2}x}}={\frac {2}{\cot x-\tan x}}} {\displaystyle \tan(2x)={\frac {2\tan x}{1-\tan ^{2}x}}={\frac {2}{\cot x-\tan x}}}
cot ⁡ ( 2 x ) = cot 2 ⁡ x − 1 2 cot ⁡ x = cot ⁡ x − tan ⁡ x 2 {\displaystyle \cot(2x)={\frac {\cot ^{2}x-1}{2\cot x}}={\frac {\cot x-\tan x}{2}}} {\displaystyle \cot(2x)={\frac {\cot ^{2}x-1}{2\cot x}}={\frac {\cot x-\tan x}{2}}}

Winkelfunktionen für weitere Vielfache

[Bearbeiten | Quelltext bearbeiten]

Die Formeln für Vielfache berechnen sich normalerweise über die komplexen Zahlen aus der Euler-Formel z = r ( cos ⁡ ϕ + i sin ⁡ ϕ ) ⟺ z n = r n ( cos ⁡ ϕ + i sin ⁡ ϕ ) n {\displaystyle z=r\left(\cos \phi +i\sin \phi \right)\iff z^{n}=r^{n}\left(\cos \phi +i\sin \phi \right)^{n}} {\displaystyle z=r\left(\cos \phi +i\sin \phi \right)\iff z^{n}=r^{n}\left(\cos \phi +i\sin \phi \right)^{n}} und der DeMoivre-Formel z n = r n ( cos ⁡ ( n ϕ ) + i sin ⁡ ( n ϕ ) ) {\displaystyle z^{n}=r^{n}\left(\cos \left(n\phi \right)+i\sin \left(n\phi \right)\right)} {\displaystyle z^{n}=r^{n}\left(\cos \left(n\phi \right)+i\sin \left(n\phi \right)\right)}. Damit ergibt sich cos ⁡ ( n ϕ ) + i sin ⁡ ( n ϕ ) = ( cos ⁡ ϕ + i sin ⁡ ϕ ) n {\displaystyle \cos \left(n\phi \right)+i\sin \left(n\phi \right)=\left(\cos \phi +i\sin \phi \right)^{n}} {\displaystyle \cos \left(n\phi \right)+i\sin \left(n\phi \right)=\left(\cos \phi +i\sin \phi \right)^{n}}. Zerlegung in Real- und Imaginärteil liefert dann die Formeln für cos {\displaystyle \cos } {\displaystyle \cos } und sin {\displaystyle \sin } {\displaystyle \sin } bzw. die allgemeine Reihendarstellung.

Die Formel für cos ⁡ ( n x ) {\displaystyle \cos(nx)} {\displaystyle \cos(nx)} steht über T n ( cos ⁡ x ) = cos ⁡ ( n x ) {\displaystyle T_{n}(\cos x)=\cos(nx)} {\displaystyle T_{n}(\cos x)=\cos(nx)}[8] mit den Tschebyschow-Polynomen in Beziehung.

sin ⁡ ( 3 x ) = 3 sin ⁡ x − 4 sin 3 ⁡ x {\displaystyle \sin(3x)=3\sin x-4\sin ^{3}x\,} {\displaystyle \sin(3x)=3\sin x-4\sin ^{3}x\,}[9]
= sin ⁡ x ( 4 cos 2 ⁡ x − 1 ) {\displaystyle =\;\sin x\left(4\cos ^{2}x-1\right)} {\displaystyle =\;\sin x\left(4\cos ^{2}x-1\right)}
sin ⁡ ( 4 x ) = 8 sin ⁡ x cos 3 ⁡ x − 4 sin ⁡ x cos ⁡ x {\displaystyle \sin(4x)=8\sin x\;\cos ^{3}x-4\sin x\;\cos x} {\displaystyle \sin(4x)=8\sin x\;\cos ^{3}x-4\sin x\;\cos x}[10]
= sin ⁡ x ( 8 cos 3 ⁡ x − 4 cos ⁡ x ) {\displaystyle =\;\sin x\left(8\cos ^{3}x-4\cos x\right)} {\displaystyle =\;\sin x\left(8\cos ^{3}x-4\cos x\right)}
sin ⁡ ( 5 x ) = 5 sin ⁡ x − 20 sin 3 ⁡ x + 16 sin 5 ⁡ x {\displaystyle \sin(5x)=5\sin x-20\sin ^{3}x+16\sin ^{5}x\;} {\displaystyle \sin(5x)=5\sin x-20\sin ^{3}x+16\sin ^{5}x\;}[11]
= sin ⁡ x ( 16 cos 4 ⁡ x − 12 cos 2 ⁡ x + 1 ) {\displaystyle =\;\sin x\left(16\cos ^{4}x-12\cos ^{2}x+1\right)} {\displaystyle =\;\sin x\left(16\cos ^{4}x-12\cos ^{2}x+1\right)}
sin ⁡ ( n x ) = n sin ⁡ x cos n − 1 ⁡ x − ( n 3 ) sin 3 ⁡ x cos n − 3 ⁡ x + ( n 5 ) sin 5 ⁡ x cos n − 5 ⁡ x − … + … {\displaystyle \sin(nx)=n\;\sin x\;\cos ^{n-1}x-{n \choose 3}\sin ^{3}x\;\cos ^{n-3}x+{n \choose 5}\sin ^{5}x\;\cos ^{n-5}x\;-\ldots +\ldots } {\displaystyle \sin(nx)=n\;\sin x\;\cos ^{n-1}x-{n \choose 3}\sin ^{3}x\;\cos ^{n-3}x+{n \choose 5}\sin ^{5}x\;\cos ^{n-5}x\;-\ldots +\ldots }[12][13]
= ∑ j = 0 ⌊ n − 1 2 ⌋ ( − 1 ) j ( n 2 j + 1 ) sin 2 j + 1 ⁡ x cos n − 2 j − 1 ⁡ x {\displaystyle =\;\sum _{j=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }(-1)^{j}{n \choose 2j+1}\sin ^{2j+1}x\;\cos ^{n-2j-1}x} {\displaystyle =\;\sum _{j=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }(-1)^{j}{n \choose 2j+1}\sin ^{2j+1}x\;\cos ^{n-2j-1}x}
= sin ⁡ x ∑ k = 0 ⌊ n − 1 2 ⌋ ( − 1 ) k ( n − k − 1 k ) 2 n − 2 k − 1 cos n − 2 k − 1 ⁡ x {\displaystyle =\;\sin x\sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }(-1)^{k}{n-k-1 \choose k}2^{n-2k-1}\cos ^{n-2k-1}x} {\displaystyle =\;\sin x\sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }(-1)^{k}{n-k-1 \choose k}2^{n-2k-1}\cos ^{n-2k-1}x}
sin ⁡ ( n x ) sin ⁡ ( x ) = cos ⁡ ( ( n − 1 ) x ) − cos ⁡ ( ( n + 1 ) x ) 2 {\displaystyle \sin(nx)\;\sin(x)={\frac {\cos((n-1)\,x)-\cos((n+1)\,x)}{2}}} {\displaystyle \sin(nx)\;\sin(x)={\frac {\cos((n-1)\,x)-\cos((n+1)\,x)}{2}}}
cos ⁡ ( 3 x ) = 4 cos 3 ⁡ x − 3 cos ⁡ x {\displaystyle \cos(3x)=4\cos ^{3}x-3\cos x\,} {\displaystyle \cos(3x)=4\cos ^{3}x-3\cos x\,}[14]
cos ⁡ ( 4 x ) = 8 cos 4 ⁡ x − 8 cos 2 ⁡ x + 1 {\displaystyle \cos(4x)=8\cos ^{4}x-8\cos ^{2}x+1\,} {\displaystyle \cos(4x)=8\cos ^{4}x-8\cos ^{2}x+1\,}[15]
cos ⁡ ( 5 x ) = 16 cos 5 ⁡ x − 20 cos 3 ⁡ x + 5 cos ⁡ x {\displaystyle \cos(5x)=16\cos ^{5}x-20\cos ^{3}x+5\cos x\,} {\displaystyle \cos(5x)=16\cos ^{5}x-20\cos ^{3}x+5\cos x\,}[16]
cos ⁡ ( 6 x ) = 32 cos 6 ⁡ x − 48 cos 4 ⁡ x + 18 cos 2 ⁡ x − 1 {\displaystyle \cos(6x)=32\cos ^{6}x-48\cos ^{4}x+18\cos ^{2}x-1\,} {\displaystyle \cos(6x)=32\cos ^{6}x-48\cos ^{4}x+18\cos ^{2}x-1\,}[17]
cos ⁡ ( n x ) = cos n ⁡ x − ( n 2 ) sin 2 ⁡ x cos n − 2 ⁡ x + ( n 4 ) sin 4 ⁡ x cos n − 4 ⁡ x − … + … {\displaystyle \cos(nx)=\cos ^{n}x-{n \choose 2}\sin ^{2}x\;\cos ^{n-2}x+{n \choose 4}\sin ^{4}x\;\cos ^{n-4}x\;-\ldots +\ldots } {\displaystyle \cos(nx)=\cos ^{n}x-{n \choose 2}\sin ^{2}x\;\cos ^{n-2}x+{n \choose 4}\sin ^{4}x\;\cos ^{n-4}x\;-\ldots +\ldots }[13][18]
= ∑ j = 0 ⌊ n 2 ⌋ ( − 1 ) j ( n 2 j ) sin 2 j ⁡ x cos n − 2 j ⁡ x {\displaystyle =\;\sum _{j=0}^{\left\lfloor {\frac {n}{2}}\right\rfloor }(-1)^{j}{n \choose 2j}\sin ^{2j}x\;\cos ^{n-2j}x} {\displaystyle =\;\sum _{j=0}^{\left\lfloor {\frac {n}{2}}\right\rfloor }(-1)^{j}{n \choose 2j}\sin ^{2j}x\;\cos ^{n-2j}x}
cos ⁡ ( n x ) cos ⁡ ( x ) = cos ⁡ ( ( n − 1 ) x ) + cos ⁡ ( ( n + 1 ) x ) 2 {\displaystyle \cos(nx)\;\cos(x)={\frac {\cos((n-1)\,x)+\cos((n+1)\,x)}{2}}} {\displaystyle \cos(nx)\;\cos(x)={\frac {\cos((n-1)\,x)+\cos((n+1)\,x)}{2}}}
tan ⁡ ( 3 x ) = 3 tan ⁡ x − tan 3 ⁡ x 1 − 3 tan 2 ⁡ x {\displaystyle \tan(3x)={\frac {3\tan x-\tan ^{3}x}{1-3\tan ^{2}x}}} {\displaystyle \tan(3x)={\frac {3\tan x-\tan ^{3}x}{1-3\tan ^{2}x}}}[13]
tan ⁡ ( 4 x ) = 4 tan ⁡ x − 4 tan 3 ⁡ x 1 − 6 tan 2 ⁡ x + tan 4 ⁡ x {\displaystyle \tan(4x)={\frac {4\tan x-4\tan ^{3}x}{1-6\tan ^{2}x+\tan ^{4}x}}} {\displaystyle \tan(4x)={\frac {4\tan x-4\tan ^{3}x}{1-6\tan ^{2}x+\tan ^{4}x}}}[13]
cot ⁡ ( 3 x ) = cot 3 ⁡ x − 3 cot ⁡ x 3 cot 2 ⁡ x − 1 {\displaystyle \cot(3x)={\frac {\cot ^{3}x-3\cot x}{3\cot ^{2}x-1}}} {\displaystyle \cot(3x)={\frac {\cot ^{3}x-3\cot x}{3\cot ^{2}x-1}}}[13]
cot ⁡ ( 4 x ) = cot 4 ⁡ x − 6 cot 2 ⁡ x + 1 4 cot 3 ⁡ x − 4 cot ⁡ x {\displaystyle \cot(4x)={\frac {\cot ^{4}x-6\cot ^{2}x+1}{4\cot ^{3}x-4\cot x}}} {\displaystyle \cot(4x)={\frac {\cot ^{4}x-6\cot ^{2}x+1}{4\cot ^{3}x-4\cot x}}}[13]

Halbwinkelformeln

[Bearbeiten | Quelltext bearbeiten]
Figur 4

Zur Berechnung des Funktionswertes des halben Arguments dienen die Halbwinkelformeln[13], welche sich mittels Substitution aus den Doppelwinkelformeln herleiten lassen:

sin ⁡ x 2 = 1 − cos ⁡ x 2 für x ∈ [ 0 , 2 π ] {\displaystyle \sin {\frac {x}{2}}={\sqrt {\frac {1-\cos x}{2}}}\quad {\text{für}}\quad x\in \left[0,2\pi \right]} {\displaystyle \sin {\frac {x}{2}}={\sqrt {\frac {1-\cos x}{2}}}\quad {\text{für}}\quad x\in \left[0,2\pi \right]}
cos ⁡ x 2 = 1 + cos ⁡ x 2 für x ∈ [ − π , π ] {\displaystyle \cos {\frac {x}{2}}={\sqrt {\frac {1+\cos x}{2}}}\quad {\text{für}}\quad x\in \left[-\pi ,\pi \right]} {\displaystyle \cos {\frac {x}{2}}={\sqrt {\frac {1+\cos x}{2}}}\quad {\text{für}}\quad x\in \left[-\pi ,\pi \right]}
tan ⁡ x 2 = 1 − cos ⁡ x sin ⁡ x = sin ⁡ x 1 + cos ⁡ x für x ∈ R ∖ π ( 2 Z + 1 ) {\displaystyle \tan {\frac {x}{2}}={\frac {1-\cos x}{\sin x}}={\frac {\sin x}{1+\cos x}}\quad {\text{für}}\quad x\in \mathbb {R} \setminus \pi (2\mathbb {Z} +1)} {\displaystyle \tan {\frac {x}{2}}={\frac {1-\cos x}{\sin x}}={\frac {\sin x}{1+\cos x}}\quad {\text{für}}\quad x\in \mathbb {R} \setminus \pi (2\mathbb {Z} +1)}
cot ⁡ x 2 = 1 + cos ⁡ x sin ⁡ x = sin ⁡ x 1 − cos ⁡ x für x ∈ R ∖ 2 π Z {\displaystyle \cot {\frac {x}{2}}={\frac {1+\cos x}{\sin x}}={\frac {\sin x}{1-\cos x}}\quad {\text{für}}\quad x\in \mathbb {R} \setminus 2\pi \mathbb {Z} } {\displaystyle \cot {\frac {x}{2}}={\frac {1+\cos x}{\sin x}}={\frac {\sin x}{1-\cos x}}\quad {\text{für}}\quad x\in \mathbb {R} \setminus 2\pi \mathbb {Z} }

Eine geometrische Herleitung der dritten Formel ist in Figur 4 für Winkel α {\displaystyle \alpha } {\displaystyle \alpha } und β {\displaystyle \beta } {\displaystyle \beta } zwischen 0° und 90° veranschaulicht.[19] Aus der Berechnung der Flächeninhalte der beiden grauen Dreiecke ergibt sich unmittelbar tan ⁡ ( α 2 ) = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α {\displaystyle \tan \left({\frac {\alpha }{2}}\right)={\frac {\sin \alpha }{1+\cos \alpha }}={\frac {1-\cos \alpha }{\sin \alpha }}} {\displaystyle \tan \left({\frac {\alpha }{2}}\right)={\frac {\sin \alpha }{1+\cos \alpha }}={\frac {1-\cos \alpha }{\sin \alpha }}}.

Außerdem gilt:

tan ⁡ x 2 = tan ⁡ x 1 + 1 + tan 2 ⁡ x für x ∈ ] − π 2 , π 2 [ {\displaystyle \tan {\frac {x}{2}}={\frac {\tan x}{1+{\sqrt {1+\tan ^{2}x}}}}\quad {\text{für}}\quad x\in \left]-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right[} {\displaystyle \tan {\frac {x}{2}}={\frac {\tan x}{1+{\sqrt {1+\tan ^{2}x}}}}\quad {\text{für}}\quad x\in \left]-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right[}
cot ⁡ x 2 = cot ⁡ x + 1 + cot 2 ⁡ x für x ∈ ] 0 , π [ {\displaystyle \cot {\frac {x}{2}}=\cot x+{\sqrt {1+\cot ^{2}x}}\quad {\text{für}}\quad x\in \left]0,\pi \right[} {\displaystyle \cot {\frac {x}{2}}=\cot x+{\sqrt {1+\cot ^{2}x}}\quad {\text{für}}\quad x\in \left]0,\pi \right[}

Siehe auch: Halbwinkelsatz

Summen zweier trigonometrischer Funktionen (Identitäten)

[Bearbeiten | Quelltext bearbeiten]

Aus den Additionstheoremen lassen sich Identitäten ableiten, mit deren Hilfe die Summe zweier trigonometrischer Funktionen als Produkt dargestellt werden kann:[13]

sin ⁡ x + sin ⁡ y = 2 sin ⁡ x + y 2 cos ⁡ x − y 2 sin ⁡ x − sin ⁡ y = 2 cos ⁡ x + y 2 sin ⁡ x − y 2 cos ⁡ x + cos ⁡ y = 2 cos ⁡ x + y 2 cos ⁡ x − y 2 cos ⁡ x − cos ⁡ y = − 2 sin ⁡ x + y 2 sin ⁡ x − y 2 {\displaystyle {\begin{aligned}\sin x+\sin y&=2\sin {\frac {x+y}{2}}\cos {\frac {x-y}{2}}\\\sin x-\sin y&=2\cos {\frac {x+y}{2}}\sin {\frac {x-y}{2}}\\\cos x+\cos y&=2\cos {\frac {x+y}{2}}\cos {\frac {x-y}{2}}\\\cos x-\cos y&=-2\sin {\frac {x+y}{2}}\sin {\frac {x-y}{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\sin x+\sin y&=2\sin {\frac {x+y}{2}}\cos {\frac {x-y}{2}}\\\sin x-\sin y&=2\cos {\frac {x+y}{2}}\sin {\frac {x-y}{2}}\\\cos x+\cos y&=2\cos {\frac {x+y}{2}}\cos {\frac {x-y}{2}}\\\cos x-\cos y&=-2\sin {\frac {x+y}{2}}\sin {\frac {x-y}{2}}\end{aligned}}}
tan ⁡ x + tan ⁡ y = sin ⁡ ( x + y ) cos ⁡ x cos ⁡ y tan ⁡ x − tan ⁡ y = sin ⁡ ( x − y ) cos ⁡ x cos ⁡ y } ⇒ tan ⁡ x ± tan ⁡ y = sin ⁡ ( x ± y ) cos ⁡ x cos ⁡ y {\displaystyle \left.{\begin{matrix}\tan x+\tan y={\dfrac {\sin(x+y)}{\cos x\cos y}}\\[1em]\tan x-\tan y={\dfrac {\sin(x-y)}{\cos x\cos y}}\end{matrix}}\right\}\Rightarrow \tan x\pm \tan y={\frac {\sin(x\pm y)}{\cos x\cos y}}} {\displaystyle \left.{\begin{matrix}\tan x+\tan y={\dfrac {\sin(x+y)}{\cos x\cos y}}\\[1em]\tan x-\tan y={\dfrac {\sin(x-y)}{\cos x\cos y}}\end{matrix}}\right\}\Rightarrow \tan x\pm \tan y={\frac {\sin(x\pm y)}{\cos x\cos y}}}
cot ⁡ x + cot ⁡ y = sin ⁡ ( y + x ) sin ⁡ x sin ⁡ y cot ⁡ x − cot ⁡ y = sin ⁡ ( y − x ) sin ⁡ x sin ⁡ y } ⇒ cot ⁡ x ± cot ⁡ y = sin ⁡ ( y ± x ) sin ⁡ x sin ⁡ y {\displaystyle \left.{\begin{matrix}\cot x+\cot y={\dfrac {\sin(y+x)}{\sin x\sin y}}\\[1em]\cot x-\cot y={\dfrac {\sin(y-x)}{\sin x\sin y}}\end{matrix}}\right\}\Rightarrow \cot x\pm \cot y={\frac {\sin(y\pm x)}{\sin x\sin y}}} {\displaystyle \left.{\begin{matrix}\cot x+\cot y={\dfrac {\sin(y+x)}{\sin x\sin y}}\\[1em]\cot x-\cot y={\dfrac {\sin(y-x)}{\sin x\sin y}}\end{matrix}}\right\}\Rightarrow \cot x\pm \cot y={\frac {\sin(y\pm x)}{\sin x\sin y}}}

Daraus ergeben sich noch Spezialfälle:

cos ⁡ x + sin ⁡ x = 2 ⋅ sin ⁡ ( x + π 4 ) = 2 ⋅ cos ⁡ ( x − π 4 ) cos ⁡ x − sin ⁡ x = 2 ⋅ cos ⁡ ( x + π 4 ) = − 2 ⋅ sin ⁡ ( x − π 4 ) {\displaystyle {\begin{aligned}\cos x+\sin x&={\sqrt {2}}\cdot \sin \left(x+{\frac {\pi }{4}}\right)={\sqrt {2}}\cdot \cos \left(x-{\frac {\pi }{4}}\right)\\\cos x-\sin x&={\sqrt {2}}\cdot \cos \left(x+{\frac {\pi }{4}}\right)=-{\sqrt {2}}\cdot \sin \left(x-{\frac {\pi }{4}}\right)\end{aligned}}} {\displaystyle {\begin{aligned}\cos x+\sin x&={\sqrt {2}}\cdot \sin \left(x+{\frac {\pi }{4}}\right)={\sqrt {2}}\cdot \cos \left(x-{\frac {\pi }{4}}\right)\\\cos x-\sin x&={\sqrt {2}}\cdot \cos \left(x+{\frac {\pi }{4}}\right)=-{\sqrt {2}}\cdot \sin \left(x-{\frac {\pi }{4}}\right)\end{aligned}}}

Produkte der Winkelfunktionen

[Bearbeiten | Quelltext bearbeiten]

Produkte der trigonometrischen Funktionen lassen sich mit folgenden Formeln berechnen:[13]

sin ⁡ x sin ⁡ y = 1 2 ( cos ⁡ ( x − y ) − cos ⁡ ( x + y ) ) {\displaystyle \sin x\;\sin y={\frac {1}{2}}{\Big (}\cos(x-y)-\cos(x+y){\Big )}} {\displaystyle \sin x\;\sin y={\frac {1}{2}}{\Big (}\cos(x-y)-\cos(x+y){\Big )}}
cos ⁡ x cos ⁡ y = 1 2 ( cos ⁡ ( x − y ) + cos ⁡ ( x + y ) ) {\displaystyle \cos x\;\cos y={\frac {1}{2}}{\Big (}\cos(x-y)+\cos(x+y){\Big )}} {\displaystyle \cos x\;\cos y={\frac {1}{2}}{\Big (}\cos(x-y)+\cos(x+y){\Big )}}
sin ⁡ x cos ⁡ y = 1 2 ( sin ⁡ ( x − y ) + sin ⁡ ( x + y ) ) {\displaystyle \sin x\;\cos y={\frac {1}{2}}{\Big (}\sin(x-y)+\sin(x+y){\Big )}} {\displaystyle \sin x\;\cos y={\frac {1}{2}}{\Big (}\sin(x-y)+\sin(x+y){\Big )}}
tan ⁡ x tan ⁡ y = tan ⁡ x + tan ⁡ y cot ⁡ x + cot ⁡ y = − tan ⁡ x − tan ⁡ y cot ⁡ x − cot ⁡ y {\displaystyle \tan x\;\tan y={\frac {\tan x+\tan y}{\cot x+\cot y}}=-{\frac {\tan x-\tan y}{\cot x-\cot y}}} {\displaystyle \tan x\;\tan y={\frac {\tan x+\tan y}{\cot x+\cot y}}=-{\frac {\tan x-\tan y}{\cot x-\cot y}}}
cot ⁡ x cot ⁡ y = cot ⁡ x + cot ⁡ y tan ⁡ x + tan ⁡ y = − cot ⁡ x − cot ⁡ y tan ⁡ x − tan ⁡ y {\displaystyle \cot x\;\cot y={\frac {\cot x+\cot y}{\tan x+\tan y}}=-{\frac {\cot x-\cot y}{\tan x-\tan y}}} {\displaystyle \cot x\;\cot y={\frac {\cot x+\cot y}{\tan x+\tan y}}=-{\frac {\cot x-\cot y}{\tan x-\tan y}}}
tan ⁡ x cot ⁡ y = tan ⁡ x + cot ⁡ y cot ⁡ x + tan ⁡ y = − tan ⁡ x − cot ⁡ y cot ⁡ x − tan ⁡ y {\displaystyle \tan x\;\cot y={\frac {\tan x+\cot y}{\cot x+\tan y}}=-{\frac {\tan x-\cot y}{\cot x-\tan y}}} {\displaystyle \tan x\;\cot y={\frac {\tan x+\cot y}{\cot x+\tan y}}=-{\frac {\tan x-\cot y}{\cot x-\tan y}}}
sin ⁡ x sin ⁡ y sin ⁡ z = 1 4 ( sin ⁡ ( x + y − z ) + sin ⁡ ( y + z − x ) + sin ⁡ ( z + x − y ) − sin ⁡ ( x + y + z ) ) {\displaystyle \sin x\;\sin y\;\sin z={\frac {1}{4}}{\Big (}\sin(x+y-z)+\sin(y+z-x)+\sin(z+x-y)-\sin(x+y+z){\Big )}} {\displaystyle \sin x\;\sin y\;\sin z={\frac {1}{4}}{\Big (}\sin(x+y-z)+\sin(y+z-x)+\sin(z+x-y)-\sin(x+y+z){\Big )}}
cos ⁡ x cos ⁡ y cos ⁡ z = 1 4 ( cos ⁡ ( x + y − z ) + cos ⁡ ( y + z − x ) + cos ⁡ ( z + x − y ) + cos ⁡ ( x + y + z ) ) {\displaystyle \cos x\;\cos y\;\cos z={\frac {1}{4}}{\Big (}\cos(x+y-z)+\cos(y+z-x)+\cos(z+x-y)+\cos(x+y+z){\Big )}} {\displaystyle \cos x\;\cos y\;\cos z={\frac {1}{4}}{\Big (}\cos(x+y-z)+\cos(y+z-x)+\cos(z+x-y)+\cos(x+y+z){\Big )}}
sin ⁡ x sin ⁡ y cos ⁡ z = 1 4 ( − cos ⁡ ( x + y − z ) + cos ⁡ ( y + z − x ) + cos ⁡ ( z + x − y ) − cos ⁡ ( x + y + z ) ) {\displaystyle \sin x\;\sin y\;\cos z={\frac {1}{4}}{\Big (}-\cos(x+y-z)+\cos(y+z-x)+\cos(z+x-y)-\cos(x+y+z){\Big )}} {\displaystyle \sin x\;\sin y\;\cos z={\frac {1}{4}}{\Big (}-\cos(x+y-z)+\cos(y+z-x)+\cos(z+x-y)-\cos(x+y+z){\Big )}}
sin ⁡ x cos ⁡ y cos ⁡ z = 1 4 ( sin ⁡ ( x + y − z ) − sin ⁡ ( y + z − x ) + sin ⁡ ( z + x − y ) + sin ⁡ ( x + y + z ) ) {\displaystyle \sin x\;\cos y\;\cos z={\frac {1}{4}}{\Big (}\sin(x+y-z)-\sin(y+z-x)+\sin(z+x-y)+\sin(x+y+z){\Big )}} {\displaystyle \sin x\;\cos y\;\cos z={\frac {1}{4}}{\Big (}\sin(x+y-z)-\sin(y+z-x)+\sin(z+x-y)+\sin(x+y+z){\Big )}}
∏ m = 1 n cos ⁡ ( x m ) = 1 2 n ∑ k 1 = 1 2 ⋯ ∑ k n = 1 2 [ exp ⁡ ( i ∑ ν = 1 n ( − 1 ) k ν x ν ) ] = 1 2 n − 1 ∑ k 2 = 1 2 ⋯ ∑ k n = 1 2 [ cos ⁡ ( x 1 + ∑ ν = 2 n ( − 1 ) k ν x ν ) ] {\displaystyle \prod _{m=1}^{n}\cos(x_{m})={\frac {1}{2^{n}}}\sum _{k_{1}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\exp \left({\text{i}}\sum _{\nu =1}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]={\frac {1}{2^{n-1}}}\sum _{k_{2}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\cos \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]} {\displaystyle \prod _{m=1}^{n}\cos(x_{m})={\frac {1}{2^{n}}}\sum _{k_{1}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\exp \left({\text{i}}\sum _{\nu =1}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]={\frac {1}{2^{n-1}}}\sum _{k_{2}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\cos \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]}
∏ m = 1 n sin ⁡ ( x m ) = 1 ( 2 i ) n ∑ k 1 = 1 2 ⋯ ∑ k n = 1 2 [ ∏ μ = 1 n ( − 1 ) k μ ⋅ exp ⁡ ( i ∑ ν = 1 n ( − 1 ) k ν x ν ) ] = 1 2 n − 1 ∑ k 2 = 1 2 ⋯ ∑ k n = 1 2 [ ∏ μ = 2 n ( − 1 ) k μ ⋅ { ( − 1 ) n / 2 ⋅ cos ⁡ ( x 1 + ∑ ν = 2 n ( − 1 ) k ν x ν ) gerade n ( − 1 ) ( n − 1 ) / 2 ⋅ sin ⁡ ( x 1 + ∑ ν = 2 n ( − 1 ) k ν x ν ) ungerade n ] {\displaystyle \prod _{m=1}^{n}\sin(x_{m})={\frac {1}{(2{\text{i}})^{n}}}\sum _{k_{1}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\prod _{\mu =1}^{n}(-1)^{k_{\mu }}\cdot \exp \left({\text{i}}\sum _{\nu =1}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]={\frac {1}{2^{n-1}}}\sum _{k_{2}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\prod _{\mu =2}^{n}(-1)^{k_{\mu }}\cdot {\begin{cases}\displaystyle (-1)^{n/2}\cdot \cos \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)&{\text{gerade}}\;n\\\displaystyle (-1)^{(n-1)/2}\cdot \sin \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)&{\text{ungerade}}\;n\end{cases}}\right]} {\displaystyle \prod _{m=1}^{n}\sin(x_{m})={\frac {1}{(2{\text{i}})^{n}}}\sum _{k_{1}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\prod _{\mu =1}^{n}(-1)^{k_{\mu }}\cdot \exp \left({\text{i}}\sum _{\nu =1}^{n}(-1)^{k_{\nu }}x_{\nu }\right)\right]={\frac {1}{2^{n-1}}}\sum _{k_{2}=1}^{2}\cdots \sum _{k_{n}=1}^{2}\left[\prod _{\mu =2}^{n}(-1)^{k_{\mu }}\cdot {\begin{cases}\displaystyle (-1)^{n/2}\cdot \cos \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)&{\text{gerade}}\;n\\\displaystyle (-1)^{(n-1)/2}\cdot \sin \left(x_{1}+\sum _{\nu =2}^{n}(-1)^{k_{\nu }}x_{\nu }\right)&{\text{ungerade}}\;n\end{cases}}\right]}

Aus der Doppelwinkelfunktion für sin ⁡ ( 2 x ) {\displaystyle \sin(2x)} {\displaystyle \sin(2x)} folgt außerdem:

sin ⁡ x cos ⁡ x = 1 2 sin ⁡ ( 2 x ) {\displaystyle \sin x\;\cos x={\frac {1}{2}}\sin(2x)} {\displaystyle \sin x\;\cos x={\frac {1}{2}}\sin(2x)}

Potenzen der Winkelfunktionen

[Bearbeiten | Quelltext bearbeiten]

Sinus

[Bearbeiten | Quelltext bearbeiten]
sin 2 ⁡ x = 1 2   ( 1 − cos ⁡ ( 2 x ) ) {\displaystyle \sin ^{2}x={\frac {1}{2}}\ {\Big (}1-\cos(2x){\Big )}} {\displaystyle \sin ^{2}x={\frac {1}{2}}\ {\Big (}1-\cos(2x){\Big )}}[13][20]
sin 3 ⁡ x = 1 4   ( 3 sin ⁡ x − sin ⁡ ( 3 x ) ) {\displaystyle \sin ^{3}x={\frac {1}{4}}\ {\Big (}3\,\sin x-\sin(3x){\Big )}} {\displaystyle \sin ^{3}x={\frac {1}{4}}\ {\Big (}3\,\sin x-\sin(3x){\Big )}}[13][21]
sin 4 ⁡ x = 1 8   ( 3 − 4 cos ⁡ ( 2 x ) + cos ⁡ ( 4 x ) ) {\displaystyle \sin ^{4}x={\frac {1}{8}}\ {\Big (}3-4\,\cos(2x)+\cos(4x){\Big )}} {\displaystyle \sin ^{4}x={\frac {1}{8}}\ {\Big (}3-4\,\cos(2x)+\cos(4x){\Big )}}[13][22]
sin 5 ⁡ x = 1 16   ( 10 sin ⁡ x − 5 sin ⁡ ( 3 x ) + sin ⁡ ( 5 x ) ) {\displaystyle \sin ^{5}x={\frac {1}{16}}\ {\Big (}10\,\sin x-5\,\sin(3x)+\sin(5x){\Big )}} {\displaystyle \sin ^{5}x={\frac {1}{16}}\ {\Big (}10\,\sin x-5\,\sin(3x)+\sin(5x){\Big )}}[23]
sin 6 ⁡ x = 1 32   ( 10 − 15 cos ⁡ ( 2 x ) + 6 cos ⁡ ( 4 x ) − cos ⁡ ( 6 x ) ) {\displaystyle \sin ^{6}x={\frac {1}{32}}\ {\Big (}10-15\,\cos(2x)+6\,\cos(4x)-\cos(6x){\Big )}} {\displaystyle \sin ^{6}x={\frac {1}{32}}\ {\Big (}10-15\,\cos(2x)+6\,\cos(4x)-\cos(6x){\Big )}}[24]
sin n ⁡ x = 1 2 n ∑ k = 0 n ( n k ) cos ⁡ ( ( n − 2 k ) ( x − π 2 ) )   ; n ∈ N {\displaystyle \sin ^{n}x={\frac {1}{2^{n}}}\,\sum _{k=0}^{n}{n \choose k}\,\cos \left((n-2k)\left(x-{\frac {\pi }{2}}\right)\right)\ ;\quad n\in \mathbb {N} } {\displaystyle \sin ^{n}x={\frac {1}{2^{n}}}\,\sum _{k=0}^{n}{n \choose k}\,\cos \left((n-2k)\left(x-{\frac {\pi }{2}}\right)\right)\ ;\quad n\in \mathbb {N} }
sin n ⁡ x = 1 2 n ( n n 2 ) + 1 2 n − 1 ∑ k = 0 n 2 − 1 ( − 1 ) n 2 − k ( n k ) cos ⁡ ( ( n − 2 k ) x ) ; n ∈ N  und  n  gerade  {\displaystyle \sin ^{n}x={\frac {1}{2^{n}}}\,{n \choose {\frac {n}{2}}}+{\frac {1}{2^{n-1}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{{\frac {n}{2}}-k}\,{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ gerade }}} {\displaystyle \sin ^{n}x={\frac {1}{2^{n}}}\,{n \choose {\frac {n}{2}}}+{\frac {1}{2^{n-1}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{{\frac {n}{2}}-k}\,{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ gerade }}}
sin n ⁡ x = 1 2 n − 1 ∑ k = 0 n − 1 2 ( − 1 ) n − 1 2 − k ( n k ) sin ⁡ ( ( n − 2 k ) x ) ; n ∈ N  und  n  ungerade {\displaystyle \sin ^{n}x={\frac {1}{2^{n-1}}}\,\sum _{k=0}^{\frac {n-1}{2}}(-1)^{{\frac {n-1}{2}}-k}\,{n \choose k}\,\sin {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ ungerade}}} {\displaystyle \sin ^{n}x={\frac {1}{2^{n-1}}}\,\sum _{k=0}^{\frac {n-1}{2}}(-1)^{{\frac {n-1}{2}}-k}\,{n \choose k}\,\sin {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ ungerade}}}

Kosinus

[Bearbeiten | Quelltext bearbeiten]
cos 2 ⁡ x = 1 2   ( 1 + cos ⁡ ( 2 x ) ) {\displaystyle \cos ^{2}x={\frac {1}{2}}\ {\Big (}1+\cos(2x){\Big )}} {\displaystyle \cos ^{2}x={\frac {1}{2}}\ {\Big (}1+\cos(2x){\Big )}}[13][25]
cos 3 ⁡ x = 1 4   ( 3 cos ⁡ x + cos ⁡ ( 3 x ) ) {\displaystyle \cos ^{3}x={\frac {1}{4}}\ {\Big (}3\,\cos x+\cos(3x){\Big )}} {\displaystyle \cos ^{3}x={\frac {1}{4}}\ {\Big (}3\,\cos x+\cos(3x){\Big )}}[13][26]
cos 4 ⁡ x = 1 8   ( 3 + 4 cos ⁡ ( 2 x ) + cos ⁡ ( 4 x ) ) {\displaystyle \cos ^{4}x={\frac {1}{8}}\ {\Big (}3+4\,\cos(2x)+\cos(4x){\Big )}} {\displaystyle \cos ^{4}x={\frac {1}{8}}\ {\Big (}3+4\,\cos(2x)+\cos(4x){\Big )}}[13][27]
cos 5 ⁡ x = 1 16   ( 10 cos ⁡ x + 5 cos ⁡ ( 3 x ) + cos ⁡ ( 5 x ) ) {\displaystyle \cos ^{5}x={\frac {1}{16}}\ {\Big (}10\,\cos x+5\,\cos(3x)+\cos(5x){\Big )}} {\displaystyle \cos ^{5}x={\frac {1}{16}}\ {\Big (}10\,\cos x+5\,\cos(3x)+\cos(5x){\Big )}}[28]
cos 6 ⁡ x = 1 32   ( 10 + 15 cos ⁡ ( 2 x ) + 6 cos ⁡ ( 4 x ) + cos ⁡ ( 6 x ) ) {\displaystyle \cos ^{6}x={\frac {1}{32}}\ {\Big (}10+15\,\cos(2x)+6\,\cos(4x)+\cos(6x){\Big )}} {\displaystyle \cos ^{6}x={\frac {1}{32}}\ {\Big (}10+15\,\cos(2x)+6\,\cos(4x)+\cos(6x){\Big )}}[29]
cos n ⁡ x = 1 2 n ∑ k = 0 n ( n k ) cos ⁡ ( ( n − 2 k ) x ) ; n ∈ N {\displaystyle \cos ^{n}x={\frac {1}{2^{n}}}\,\sum _{k=0}^{n}{n \choose k}\,\cos((n-2k)x);\quad n\in \mathbb {N} } {\displaystyle \cos ^{n}x={\frac {1}{2^{n}}}\,\sum _{k=0}^{n}{n \choose k}\,\cos((n-2k)x);\quad n\in \mathbb {N} }
cos n ⁡ x = 1 2 n ( n n 2 ) + 1 2 n − 1 ∑ k = 0 n 2 − 1 ( n k ) cos ⁡ ( ( n − 2 k ) x ) ; n ∈ N  und  n  gerade  {\displaystyle \cos ^{n}x={\frac {1}{2^{n}}}\,{n \choose {\frac {n}{2}}}+{\frac {1}{2^{n-1}}}\sum _{k=0}^{{\frac {n}{2}}-1}{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ gerade }}} {\displaystyle \cos ^{n}x={\frac {1}{2^{n}}}\,{n \choose {\frac {n}{2}}}+{\frac {1}{2^{n-1}}}\sum _{k=0}^{{\frac {n}{2}}-1}{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ gerade }}}
cos n ⁡ x = 1 2 n − 1 ∑ k = 0 n − 1 2 ( n k ) cos ⁡ ( ( n − 2 k ) x ) ; n ∈ N  und  n  ungerade {\displaystyle \cos ^{n}x={\frac {1}{2^{n-1}}}\,\sum _{k=0}^{\frac {n-1}{2}}{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ ungerade}}} {\displaystyle \cos ^{n}x={\frac {1}{2^{n-1}}}\,\sum _{k=0}^{\frac {n-1}{2}}{n \choose k}\,\cos {((n-2k)x)};\quad n\in \mathbb {N} {\text{ und }}n{\text{ ungerade}}}

Tangens

[Bearbeiten | Quelltext bearbeiten]
tan 2 ⁡ x = 1 − cos ⁡ ( 2 x ) 1 + cos ⁡ ( 2 x ) = sec 2 ⁡ ( x ) − 1 {\displaystyle \tan ^{2}x={\frac {1-\cos(2x)}{1+\cos(2x)}}=\sec ^{2}(x)-1} {\displaystyle \tan ^{2}x={\frac {1-\cos(2x)}{1+\cos(2x)}}=\sec ^{2}(x)-1}

Umrechnung in andere trigonometrische Funktionen

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ ( arccos ⁡ x ) = cos ⁡ ( arcsin ⁡ x ) = 1 − x 2 {\displaystyle \sin(\arccos x)=\cos(\arcsin x)={\sqrt {1-x^{2}}}} {\displaystyle \sin(\arccos x)=\cos(\arcsin x)={\sqrt {1-x^{2}}}}
sin ⁡ ( arctan ⁡ x ) = cos ⁡ ( arccot ⁡ x ) = x 1 + x 2 {\displaystyle \sin(\arctan x)=\cos(\operatorname {arccot} x)={\frac {x}{\sqrt {1+x^{2}}}}} {\displaystyle \sin(\arctan x)=\cos(\operatorname {arccot} x)={\frac {x}{\sqrt {1+x^{2}}}}}
sin ⁡ ( arccot ⁡ x ) = cos ⁡ ( arctan ⁡ x ) = 1 1 + x 2 {\displaystyle \sin(\operatorname {arccot} x)=\cos(\arctan x)={\frac {1}{\sqrt {1+x^{2}}}}} {\displaystyle \sin(\operatorname {arccot} x)=\cos(\arctan x)={\frac {1}{\sqrt {1+x^{2}}}}}
tan ⁡ ( arcsin ⁡ x ) = cot ⁡ ( arccos ⁡ x ) = x 1 − x 2 {\displaystyle \tan(\arcsin x)=\cot(\arccos x)={\frac {x}{\sqrt {1-x^{2}}}}} {\displaystyle \tan(\arcsin x)=\cot(\arccos x)={\frac {x}{\sqrt {1-x^{2}}}}}
tan ⁡ ( arccos ⁡ x ) = cot ⁡ ( arcsin ⁡ x ) = 1 − x 2 x {\displaystyle \tan(\arccos x)=\cot(\arcsin x)={\frac {\sqrt {1-x^{2}}}{x}}} {\displaystyle \tan(\arccos x)=\cot(\arcsin x)={\frac {\sqrt {1-x^{2}}}{x}}}
tan ⁡ ( arccot ⁡ x ) = cot ⁡ ( arctan ⁡ x ) = 1 x {\displaystyle \tan(\operatorname {arccot} x)=\cot(\arctan x)={\frac {1}{x}}} {\displaystyle \tan(\operatorname {arccot} x)=\cot(\arctan x)={\frac {1}{x}}}

Weitere Formeln für den Fall α + β + γ = 180°

[Bearbeiten | Quelltext bearbeiten]

Die folgenden Formeln gelten für beliebige ebene Dreiecke und folgen nach längeren Termumformungen aus α + β + γ = 180 ∘ {\displaystyle \alpha +\beta +\gamma =180^{\circ }} {\displaystyle \alpha +\beta +\gamma =180^{\circ }}, solange die in den Formeln vorkommenden Funktionen wohldefiniert sind (Letzteres betrifft nur die Formeln, in denen Tangens und Kotangens vorkommen).

tan ⁡ α + tan ⁡ β + tan ⁡ γ = tan ⁡ α tan ⁡ β tan ⁡ γ cot ⁡ α 2 + cot ⁡ β 2 + cot ⁡ γ 2 = cot ⁡ α 2 cot ⁡ β 2 cot ⁡ γ 2 {\displaystyle {\begin{aligned}\tan \alpha +\tan \beta +\tan \gamma &=\tan \alpha \tan \beta \tan \gamma \\\cot {\frac {\alpha }{2}}+\cot {\frac {\beta }{2}}+\cot {\frac {\gamma }{2}}&=\cot {\frac {\alpha }{2}}\cot {\frac {\beta }{2}}\cot {\frac {\gamma }{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\tan \alpha +\tan \beta +\tan \gamma &=\tan \alpha \tan \beta \tan \gamma \\\cot {\frac {\alpha }{2}}+\cot {\frac {\beta }{2}}+\cot {\frac {\gamma }{2}}&=\cot {\frac {\alpha }{2}}\cot {\frac {\beta }{2}}\cot {\frac {\gamma }{2}}\end{aligned}}}
cot ⁡ β cot ⁡ γ + cot ⁡ γ cot ⁡ α + cot ⁡ α cot ⁡ β = 1 tan ⁡ β 2 tan ⁡ γ 2 + tan ⁡ γ 2 tan ⁡ α 2 + tan ⁡ α 2 tan ⁡ β 2 = 1 {\displaystyle {\begin{aligned}\cot \beta \cot \gamma +\cot \gamma \cot \alpha +\cot \alpha \cot \beta &=1\\\tan {\frac {\beta }{2}}\tan {\frac {\gamma }{2}}+\tan {\frac {\gamma }{2}}\tan {\frac {\alpha }{2}}+\tan {\frac {\alpha }{2}}\tan {\frac {\beta }{2}}&=1\end{aligned}}} {\displaystyle {\begin{aligned}\cot \beta \cot \gamma +\cot \gamma \cot \alpha +\cot \alpha \cot \beta &=1\\\tan {\frac {\beta }{2}}\tan {\frac {\gamma }{2}}+\tan {\frac {\gamma }{2}}\tan {\frac {\alpha }{2}}+\tan {\frac {\alpha }{2}}\tan {\frac {\beta }{2}}&=1\end{aligned}}}
sin ⁡ α + sin ⁡ β + sin ⁡ γ = 4 cos ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 − sin ⁡ α + sin ⁡ β + sin ⁡ γ = 4 cos ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 {\displaystyle {\begin{aligned}\sin \alpha +\sin \beta +\sin \gamma &=4\cos {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}\\-\sin \alpha +\sin \beta +\sin \gamma &=4\cos {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\sin \alpha +\sin \beta +\sin \gamma &=4\cos {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}\\-\sin \alpha +\sin \beta +\sin \gamma &=4\cos {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}\end{aligned}}}
cos ⁡ α + cos ⁡ β + cos ⁡ γ = 4 sin ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 + 1 − cos ⁡ α + cos ⁡ β + cos ⁡ γ = 4 sin ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 − 1 {\displaystyle {\begin{aligned}\cos \alpha +\cos \beta +\cos \gamma &=4\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+1\\-\cos \alpha +\cos \beta +\cos \gamma &=4\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}-1\end{aligned}}} {\displaystyle {\begin{aligned}\cos \alpha +\cos \beta +\cos \gamma &=4\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+1\\-\cos \alpha +\cos \beta +\cos \gamma &=4\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}-1\end{aligned}}}
sin ⁡ 2 α + sin ⁡ 2 β + sin ⁡ 2 γ = 4 sin ⁡ α sin ⁡ β sin ⁡ γ − sin ⁡ 2 α + sin ⁡ 2 β + sin ⁡ 2 γ = 4 sin ⁡ α cos ⁡ β cos ⁡ γ {\displaystyle {\begin{aligned}\sin 2\alpha +\sin 2\beta +\sin 2\gamma &=4\sin \alpha \sin \beta \sin \gamma \\-\sin 2\alpha +\sin 2\beta +\sin 2\gamma &=4\sin \alpha \cos \beta \cos \gamma \end{aligned}}} {\displaystyle {\begin{aligned}\sin 2\alpha +\sin 2\beta +\sin 2\gamma &=4\sin \alpha \sin \beta \sin \gamma \\-\sin 2\alpha +\sin 2\beta +\sin 2\gamma &=4\sin \alpha \cos \beta \cos \gamma \end{aligned}}}
cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = − 4 cos ⁡ α cos ⁡ β cos ⁡ γ − 1 − cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = − 4 cos ⁡ α sin ⁡ β sin ⁡ γ + 1 {\displaystyle {\begin{aligned}\cos 2\alpha +\cos 2\beta +\cos 2\gamma &=-4\cos \alpha \cos \beta \cos \gamma -1\\-\cos 2\alpha +\cos 2\beta +\cos 2\gamma &=-4\cos \alpha \sin \beta \sin \gamma +1\end{aligned}}} {\displaystyle {\begin{aligned}\cos 2\alpha +\cos 2\beta +\cos 2\gamma &=-4\cos \alpha \cos \beta \cos \gamma -1\\-\cos 2\alpha +\cos 2\beta +\cos 2\gamma &=-4\cos \alpha \sin \beta \sin \gamma +1\end{aligned}}}
sin 2 ⁡ α + sin 2 ⁡ β + sin 2 ⁡ γ = 2 cos ⁡ α cos ⁡ β cos ⁡ γ + 2 − sin 2 ⁡ α + sin 2 ⁡ β + sin 2 ⁡ γ = 2 cos ⁡ α sin ⁡ β sin ⁡ γ {\displaystyle {\begin{aligned}\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \cos \beta \cos \gamma +2\\-\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \sin \beta \sin \gamma \end{aligned}}} {\displaystyle {\begin{aligned}\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \cos \beta \cos \gamma +2\\-\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \sin \beta \sin \gamma \end{aligned}}}
cos 2 ⁡ α + cos 2 ⁡ β + cos 2 ⁡ γ = − 2 cos ⁡ α cos ⁡ β cos ⁡ γ + 1 − cos 2 ⁡ α + cos 2 ⁡ β + cos 2 ⁡ γ = − 2 cos ⁡ α sin ⁡ β sin ⁡ γ + 1 {\displaystyle {\begin{aligned}\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \cos \beta \cos \gamma +1\\-\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \sin \beta \sin \gamma +1\end{aligned}}} {\displaystyle {\begin{aligned}\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \cos \beta \cos \gamma +1\\-\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \sin \beta \sin \gamma +1\end{aligned}}}
sin 2 ⁡ 2 α + sin 2 ⁡ 2 β + sin 2 ⁡ 2 γ = − 2 cos ⁡ 2 α cos ⁡ 2 β cos ⁡ 2 γ + 2 − sin 2 ⁡ 2 α + sin 2 ⁡ 2 β + sin 2 ⁡ 2 γ = − 2 cos ⁡ 2 α sin ⁡ 2 β sin ⁡ 2 γ {\displaystyle {\begin{aligned}\sin ^{2}2\alpha +\sin ^{2}2\beta +\sin ^{2}2\gamma &=-2\cos 2\alpha \cos 2\beta \cos 2\gamma +2\\-\sin ^{2}2\alpha +\sin ^{2}2\beta +\sin ^{2}2\gamma &=-2\cos 2\alpha \sin 2\beta \sin 2\gamma \end{aligned}}} {\displaystyle {\begin{aligned}\sin ^{2}2\alpha +\sin ^{2}2\beta +\sin ^{2}2\gamma &=-2\cos 2\alpha \cos 2\beta \cos 2\gamma +2\\-\sin ^{2}2\alpha +\sin ^{2}2\beta +\sin ^{2}2\gamma &=-2\cos 2\alpha \sin 2\beta \sin 2\gamma \end{aligned}}}
cos 2 ⁡ 2 α + cos 2 ⁡ 2 β + cos 2 ⁡ 2 γ = 2 cos ⁡ 2 α cos ⁡ 2 β cos ⁡ 2 γ + 1 − cos 2 ⁡ 2 α + cos 2 ⁡ 2 β + cos 2 ⁡ 2 γ = 2 cos ⁡ 2 α sin ⁡ 2 β sin ⁡ 2 γ + 1 {\displaystyle {\begin{aligned}\cos ^{2}2\alpha +\cos ^{2}2\beta +\cos ^{2}2\gamma &=2\cos 2\alpha \cos 2\beta \cos 2\gamma +1\\-\cos ^{2}2\alpha +\cos ^{2}2\beta +\cos ^{2}2\gamma &=2\cos 2\alpha \sin 2\beta \sin 2\gamma +1\end{aligned}}} {\displaystyle {\begin{aligned}\cos ^{2}2\alpha +\cos ^{2}2\beta +\cos ^{2}2\gamma &=2\cos 2\alpha \cos 2\beta \cos 2\gamma +1\\-\cos ^{2}2\alpha +\cos ^{2}2\beta +\cos ^{2}2\gamma &=2\cos 2\alpha \sin 2\beta \sin 2\gamma +1\end{aligned}}}
sin 2 ⁡ α 2 + sin 2 ⁡ β 2 + sin 2 ⁡ γ 2 = − 2 sin ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 + 1 − sin 2 ⁡ α 2 + sin 2 ⁡ β 2 + sin 2 ⁡ γ 2 = − 2 sin ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 + 1 {\displaystyle {\begin{aligned}\sin ^{2}{\frac {\alpha }{2}}+\sin ^{2}{\frac {\beta }{2}}+\sin ^{2}{\frac {\gamma }{2}}&=-2\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+1\\-\sin ^{2}{\frac {\alpha }{2}}+\sin ^{2}{\frac {\beta }{2}}+\sin ^{2}{\frac {\gamma }{2}}&=-2\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}+1\end{aligned}}} {\displaystyle {\begin{aligned}\sin ^{2}{\frac {\alpha }{2}}+\sin ^{2}{\frac {\beta }{2}}+\sin ^{2}{\frac {\gamma }{2}}&=-2\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+1\\-\sin ^{2}{\frac {\alpha }{2}}+\sin ^{2}{\frac {\beta }{2}}+\sin ^{2}{\frac {\gamma }{2}}&=-2\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}+1\end{aligned}}}
cos 2 ⁡ α 2 + cos 2 ⁡ β 2 + cos 2 ⁡ γ 2 = 2 sin ⁡ α 2 sin ⁡ β 2 sin ⁡ γ 2 + 2 − cos 2 ⁡ α 2 + cos 2 ⁡ β 2 + cos 2 ⁡ γ 2 = 2 sin ⁡ α 2 cos ⁡ β 2 cos ⁡ γ 2 {\displaystyle {\begin{aligned}\cos ^{2}{\frac {\alpha }{2}}+\cos ^{2}{\frac {\beta }{2}}+\cos ^{2}{\frac {\gamma }{2}}&=2\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+2\\-\cos ^{2}{\frac {\alpha }{2}}+\cos ^{2}{\frac {\beta }{2}}+\cos ^{2}{\frac {\gamma }{2}}&=2\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\cos ^{2}{\frac {\alpha }{2}}+\cos ^{2}{\frac {\beta }{2}}+\cos ^{2}{\frac {\gamma }{2}}&=2\sin {\frac {\alpha }{2}}\sin {\frac {\beta }{2}}\sin {\frac {\gamma }{2}}+2\\-\cos ^{2}{\frac {\alpha }{2}}+\cos ^{2}{\frac {\beta }{2}}+\cos ^{2}{\frac {\gamma }{2}}&=2\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\cos {\frac {\gamma }{2}}\end{aligned}}}

Sinusoid und Linearkombination mit gleicher Phase

[Bearbeiten | Quelltext bearbeiten]
a sin ⁡ α + b cos ⁡ α = { a 2 + b 2 sin ⁡ ( α + arctan ⁡ ( b a ) ) , für alle  a > 0 a 2 + b 2 cos ⁡ ( α − arctan ⁡ ( a b ) ) , für alle  b > 0 {\displaystyle {\begin{aligned}a\sin \alpha +b\cos \alpha =&{\begin{cases}{\sqrt {a^{2}+b^{2}}}\sin \left(\alpha +\arctan \left({\tfrac {b}{a}}\right)\right)&{\text{, für alle }}a>0\\{\sqrt {a^{2}+b^{2}}}\cos \left(\alpha -\arctan \left({\tfrac {a}{b}}\right)\right)&{\text{, für alle }}b>0\end{cases}}\end{aligned}}} {\displaystyle {\begin{aligned}a\sin \alpha +b\cos \alpha =&{\begin{cases}{\sqrt {a^{2}+b^{2}}}\sin \left(\alpha +\arctan \left({\tfrac {b}{a}}\right)\right)&{\text{, für alle }}a>0\\{\sqrt {a^{2}+b^{2}}}\cos \left(\alpha -\arctan \left({\tfrac {a}{b}}\right)\right)&{\text{, für alle }}b>0\end{cases}}\end{aligned}}}
a cos ⁡ α + b sin ⁡ α = sgn ⁡ ( a ) a 2 + b 2 cos ⁡ ( α + arctan ⁡ ( − b a ) ) {\displaystyle {\begin{aligned}a\cos \alpha +b\sin \alpha =\operatorname {sgn}(a){\sqrt {a^{2}+b^{2}}}\cos \left(\alpha +\arctan \left(-{\tfrac {b}{a}}\right)\right)\end{aligned}}} {\displaystyle {\begin{aligned}a\cos \alpha +b\sin \alpha =\operatorname {sgn} (a){\sqrt {a^{2}+b^{2}}}\cos \left(\alpha +\arctan \left(-{\tfrac {b}{a}}\right)\right)\end{aligned}}}[30]
a sin ⁡ ( x + α ) + b sin ⁡ ( x + β ) = a 2 + b 2 + 2 a b cos ⁡ ( α − β ) ⋅ sin ⁡ ( x + δ ) , {\displaystyle a\sin(x+\alpha )+b\sin(x+\beta )={\sqrt {a^{2}+b^{2}+2ab\cos(\alpha -\beta )}}\cdot \sin(x+\delta ),} {\displaystyle a\sin(x+\alpha )+b\sin(x+\beta )={\sqrt {a^{2}+b^{2}+2ab\cos(\alpha -\beta )}}\cdot \sin(x+\delta ),}

wobei δ = atan2 ⁡ ( a sin ⁡ α + b sin ⁡ β , a cos ⁡ α + b cos ⁡ β ) . {\displaystyle \delta =\operatorname {atan2} (a\sin \alpha +b\sin \beta ,a\cos \alpha +b\cos \beta ).} {\displaystyle \delta =\operatorname {atan2} (a\sin \alpha +b\sin \beta ,a\cos \alpha +b\cos \beta ).}

Allgemeiner ist

∑ i a i sin ⁡ ( x + δ i ) = a sin ⁡ ( x + δ ) , {\displaystyle \sum _{i}a_{i}\sin(x+\delta _{i})=a\sin(x+\delta ),} {\displaystyle \sum _{i}a_{i}\sin(x+\delta _{i})=a\sin(x+\delta ),}

wobei

a 2 = ∑ i , j a i a j cos ⁡ ( δ i − δ j ) {\displaystyle a^{2}=\sum _{i,j}a_{i}a_{j}\cos(\delta _{i}-\delta _{j})} {\displaystyle a^{2}=\sum _{i,j}a_{i}a_{j}\cos(\delta _{i}-\delta _{j})}

und

δ = atan2 ⁡ ( ∑ i a i sin ⁡ δ i , ∑ i a i cos ⁡ δ i ) . {\displaystyle \delta =\operatorname {atan2} \left(\sum _{i}a_{i}\sin \delta _{i},\sum _{i}a_{i}\cos \delta _{i}\right).} {\displaystyle \delta =\operatorname {atan2} \left(\sum _{i}a_{i}\sin \delta _{i},\sum _{i}a_{i}\cos \delta _{i}\right).}

Ableitungen und Stammfunktionen

[Bearbeiten | Quelltext bearbeiten]

Siehe Formelsammlung Ableitungen und Stammfunktionen

Bestimmte Integrale

[Bearbeiten | Quelltext bearbeiten]

Die Lösungen der nachfolgenden bestimmten Integrale stehen im Zusammenhang mit der Euler’schen Betafunktion, welche weiterhin mit der Gammafunktion verknüpft ist. Das zweite Integral ist z. B. in der Physik bei der Berechnung von Kräften zwischen zylinderförmigen Dauermagneten unter Verwendung der sogenannten Multipol-Entwicklung hilfreich.

∫ 0 π / 2 cos ν 1 ⁡ φ sin ν 2 ⁡ φ d φ = 1 2 ⋅ B ⁡ ( ν 1 + 1 2 , ν 2 + 1 2 ) , Re ( ν j + 1 2 ) > 0 {\displaystyle \int _{0}^{\pi /2}\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi ={\frac {1}{2}}\cdot \operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\;,\quad {\text{Re}}\left({\frac {\nu _{j}+1}{2}}\right)>0} {\displaystyle \int _{0}^{\pi /2}\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi ={\frac {1}{2}}\cdot \operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\;,\quad {\text{Re}}\left({\frac {\nu _{j}+1}{2}}\right)>0}
∫ 0 π cos ν 1 ⁡ φ sin ν 2 ⁡ φ d φ = B ⁡ ( ν 1 + 1 2 , ν 2 + 1 2 ) ⋅ 1 + ( − 1 ) ν 1 2 , ν j = 0 , 1 , 2 , 3 , … {\displaystyle \int _{0}^{\pi }\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi =\operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\cdot {\frac {1+(-1)^{\nu _{1}}}{2}},\quad \nu _{j}=0,1,2,3,\dots } {\displaystyle \int _{0}^{\pi }\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi =\operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\cdot {\frac {1+(-1)^{\nu _{1}}}{2}},\quad \nu _{j}=0,1,2,3,\dots }
∫ 0 2 π cos ν 1 ⁡ φ sin ν 2 ⁡ φ d φ = 2 ⋅ B ⁡ ( ν 1 + 1 2 , ν 2 + 1 2 ) ⋅ 1 + ( − 1 ) ν 1 2 ⋅ 1 + ( − 1 ) ν 2 2 , ν j = 0 , 1 , 2 , 3 , … {\displaystyle \int _{0}^{2\pi }\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi =2\cdot \operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\cdot {\frac {1+(-1)^{\nu _{1}}}{2}}\cdot {\frac {1+(-1)^{\nu _{2}}}{2}},\quad \nu _{j}=0,1,2,3,\dots } {\displaystyle \int _{0}^{2\pi }\cos ^{\nu _{1}}\varphi \sin ^{\nu _{2}}\varphi \;{\text{d}}\varphi =2\cdot \operatorname {B} \left({\frac {\nu _{1}+1}{2}},{\frac {\nu _{2}+1}{2}}\right)\cdot {\frac {1+(-1)^{\nu _{1}}}{2}}\cdot {\frac {1+(-1)^{\nu _{2}}}{2}},\quad \nu _{j}=0,1,2,3,\dots }

Reihenentwicklung

[Bearbeiten | Quelltext bearbeiten]
Der Sinus (rot) verglichen mit seinem 7. Taylorpolynom (grün)

Wie auch sonst in der Analysis werden alle Winkel im Bogenmaß angegeben.

Man kann zeigen, dass der Kosinus die Ableitung des Sinus darstellt und die Ableitung des Kosinus der negative Sinus ist. Hat man diese Ableitungen, kann man die Taylorreihe entwickeln (am einfachsten mit dem Entwicklungspunkt x = 0 {\displaystyle x=0} {\displaystyle x=0}) und zeigen, dass die folgenden Identitäten für alle x {\displaystyle x} {\displaystyle x} aus den reellen Zahlen gelten. Mit diesen Reihen werden die trigonometrischen Funktionen für komplexe Argumente definiert ( B n {\displaystyle B_{n}} {\displaystyle B_{n}} bzw. β n {\displaystyle \beta _{n}} {\displaystyle \beta _{n}} bezeichnet dabei die Bernoulli-Zahlen):

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! − x 7 7 ! ± ⋯ , | x | < ∞ {\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}\\&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}\pm \cdots \;,\qquad |x|<\infty \end{aligned}}} {\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}\\&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}\pm \cdots \;,\qquad |x|<\infty \end{aligned}}}
cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! ± ⋯ , | x | < ∞ {\displaystyle {\begin{aligned}\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}\\&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}\pm \cdots \;,\qquad |x|<\infty \end{aligned}}} {\displaystyle {\begin{aligned}\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}\\&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}\pm \cdots \;,\qquad |x|<\infty \end{aligned}}}
tan ⁡ x = ∑ n = 1 ∞ ( − 1 ) n 2 2 n ( 1 − 2 2 n ) β 2 n ( 2 n ) ! x 2 n − 1 = ∑ n = 1 ∞ ( − 1 ) n − 1 2 2 n ( 2 2 n − 1 ) B 2 n ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + ⋯ | x | < π 2 {\displaystyle {\begin{aligned}\tan x&=\sum _{n=1}^{\infty }(-1)^{n}{\frac {2^{2n}(1-2^{2n})\beta _{2n}}{(2n)!}}x^{2n-1}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}x^{2n-1}\\&=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+{\frac {62}{2835}}x^{9}+\,\cdots \qquad |x|<{\tfrac {\pi }{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\tan x&=\sum _{n=1}^{\infty }(-1)^{n}{\frac {2^{2n}(1-2^{2n})\beta _{2n}}{(2n)!}}x^{2n-1}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}x^{2n-1}\\&=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+{\frac {62}{2835}}x^{9}+\,\cdots \qquad |x|<{\tfrac {\pi }{2}}\end{aligned}}}[31]
cot ⁡ x = 1 x − ∑ n = 1 ∞ ( − 1 ) n − 1 2 2 n β 2 n ( 2 n ) ! x 2 n − 1 = 1 x − ∑ n = 1 ∞ ( − 1 ) n − 1 2 2 n B 2 n ( 2 n ) ! x 2 n − 1 = 1 x − 1 3 x − 1 45 x 3 − 2 945 x 5 − 1 4725 x 7 − ⋯ , 0 < | x | < π {\displaystyle {\begin{aligned}\cot x&={\frac {1}{x}}-\sum _{n=1}^{\infty }{\frac {\left(-1\right)^{n-1}2^{2n}\beta _{2n}}{(2n)!}}x^{2n-1}={\frac {1}{x}}-\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}B_{2n}}{(2n)!}}x^{2n-1}\\&={\frac {1}{x}}-{\frac {1}{3}}x-{\frac {1}{45}}x^{3}-{\frac {2}{945}}x^{5}-{\frac {1}{4725}}x^{7}-\,\cdots ,\qquad 0<|x|<\pi \end{aligned}}} {\displaystyle {\begin{aligned}\cot x&={\frac {1}{x}}-\sum _{n=1}^{\infty }{\frac {\left(-1\right)^{n-1}2^{2n}\beta _{2n}}{(2n)!}}x^{2n-1}={\frac {1}{x}}-\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}B_{2n}}{(2n)!}}x^{2n-1}\\&={\frac {1}{x}}-{\frac {1}{3}}x-{\frac {1}{45}}x^{3}-{\frac {2}{945}}x^{5}-{\frac {1}{4725}}x^{7}-\,\cdots ,\qquad 0<|x|<\pi \end{aligned}}}[32]

Produktentwicklung

[Bearbeiten | Quelltext bearbeiten]
sin ⁡ ( x ) = x ∏ k = 1 ∞ ( 1 − x 2 k 2 π 2 ) {\displaystyle \sin(x)=x\prod _{k=1}^{\infty }\left(1-{\frac {x^{2}}{k^{2}\pi ^{2}}}\right)} {\displaystyle \sin(x)=x\prod _{k=1}^{\infty }\left(1-{\frac {x^{2}}{k^{2}\pi ^{2}}}\right)}
cos ⁡ ( x ) = ∏ k = 1 ∞ ( 1 − 4 x 2 ( 2 k − 1 ) 2 π 2 ) {\displaystyle \cos(x)=\prod _{k=1}^{\infty }\left(1-{\frac {4x^{2}}{(2k-1)^{2}\pi ^{2}}}\right)} {\displaystyle \cos(x)=\prod _{k=1}^{\infty }\left(1-{\frac {4x^{2}}{(2k-1)^{2}\pi ^{2}}}\right)}
sin ⁡ ( x ) = ∏ n = − ∞ ∞ ( x + n π π 2 + n π ) {\displaystyle \sin(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi }{{\frac {\pi }{2}}+n\pi }}\right)} {\displaystyle \sin(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi }{{\frac {\pi }{2}}+n\pi }}\right)}
cos ⁡ ( x ) = ∏ n = − ∞ ∞ ( x + n π + π 2 π 2 + n π ) {\displaystyle \cos(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi +{\frac {\pi }{2}}}{{\frac {\pi }{2}}+n\pi }}\right)} {\displaystyle \cos(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi +{\frac {\pi }{2}}}{{\frac {\pi }{2}}+n\pi }}\right)}
tan ⁡ ( x ) = ∏ n = − ∞ ∞ ( x + n π x + n π + π 2 ) {\displaystyle \tan(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi }{x+n\pi +{\frac {\pi }{2}}}}\right)} {\displaystyle \tan(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi }{x+n\pi +{\frac {\pi }{2}}}}\right)}
csc ⁡ ( x ) = ∏ n = − ∞ ∞ ( π 2 + n π x + n π ) {\displaystyle \csc(x)=\prod _{n=-\infty }^{\infty }\left({\frac {{\frac {\pi }{2}}+n\pi }{x+n\pi }}\right)} {\displaystyle \csc(x)=\prod _{n=-\infty }^{\infty }\left({\frac {{\frac {\pi }{2}}+n\pi }{x+n\pi }}\right)}
sec ⁡ ( x ) = ∏ n = − ∞ ∞ ( π 2 + n π x + n π + π 2 ) {\displaystyle \sec(x)=\prod _{n=-\infty }^{\infty }\left({\frac {{\frac {\pi }{2}}+n\pi }{x+n\pi +{\frac {\pi }{2}}}}\right)} {\displaystyle \sec(x)=\prod _{n=-\infty }^{\infty }\left({\frac {{\frac {\pi }{2}}+n\pi }{x+n\pi +{\frac {\pi }{2}}}}\right)}
cot ⁡ ( x ) = ∏ n = − ∞ ∞ ( x + n π + π 2 x + n π ) {\displaystyle \cot(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi +{\frac {\pi }{2}}}{x+n\pi }}\right)} {\displaystyle \cot(x)=\prod _{n=-\infty }^{\infty }\left({\frac {x+n\pi +{\frac {\pi }{2}}}{x+n\pi }}\right)}

Zusammenhang mit der komplexen Exponentialfunktion

[Bearbeiten | Quelltext bearbeiten]

Ferner besteht zwischen den Funktionen sin ⁡ x {\displaystyle \sin x} {\displaystyle \sin x}, cos ⁡ x {\displaystyle \cos x} {\displaystyle \cos x} und der komplexen Exponentialfunktion exp ⁡ ( i x ) {\displaystyle \exp(\mathrm {i} x)} {\displaystyle \exp(\mathrm {i} x)} folgender Zusammenhang:

exp ⁡ ( ± i x ) = cos ⁡ x ± i sin ⁡ x = e ± i x {\displaystyle \exp(\pm \mathrm {i} x)=\cos x\pm \mathrm {i} \sin x=e^{\pm \mathrm {i} x}} {\displaystyle \exp(\pm \mathrm {i} x)=\cos x\pm \mathrm {i} \sin x=e^{\pm \mathrm {i} x}} (Eulersche Formel)

Weiterhin wird cos ⁡ x + i sin ⁡ x =: cis ⁡ ( x ) {\displaystyle \cos {x}+\mathrm {i} \sin {x}=:\operatorname {cis} (x)} {\displaystyle \cos {x}+\mathrm {i} \sin {x}=:\operatorname {cis} (x)} geschrieben.[33]

Auf Grund der oben genannten Symmetrien gilt weiter:

cos ⁡ x = exp ⁡ ( i x ) + exp ⁡ ( − i x ) 2 {\displaystyle \cos x={\frac {\exp(\mathrm {i} x)+\exp(-\mathrm {i} x)}{2}}} {\displaystyle \cos x={\frac {\exp(\mathrm {i} x)+\exp(-\mathrm {i} x)}{2}}}
sin ⁡ x = exp ⁡ ( i x ) − exp ⁡ ( − i x ) 2 i {\displaystyle \sin x={\frac {\exp(\mathrm {i} x)-\exp(-\mathrm {i} x)}{2\mathrm {i} }}} {\displaystyle \sin x={\frac {\exp(\mathrm {i} x)-\exp(-\mathrm {i} x)}{2\mathrm {i} }}}

Mit diesen Beziehungen können einige Additionstheoreme besonders einfach und elegant hergeleitet werden.

Sphärische Trigonometrie

[Bearbeiten | Quelltext bearbeiten]

Eine Formelsammlung für das rechtwinklige und das allgemeine Dreieck auf der Kugeloberfläche findet sich in einem eigenen Kapitel.

Weblinks

[Bearbeiten | Quelltext bearbeiten]
  • Abramowitz-Stegun: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. ↑ Die Wurzel 2006/04+05, 104ff., ohne Beweis
  2. ↑ Joachim Mohr: Kosinus-, Sinus und Tangenswerte, abgerufen am 1. Juni 2016
  3. ↑ Ausführliche Beweise in Wikibooks Beweisarchiv.
  4. ↑ a b Otto Forster: Analysis 1. Differential- und Integralrechnung einer Veränderlichen. vieweg 1983, Seite 87.
  5. ↑ Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 44
  6. ↑ I. N. Bronstein, K. A. Semendjajew: Taschenbuch der Mathematik. 19. Auflage, 1979. B.G. Teubner Verlagsgesellschaft, Leipzig. S. 237.
  7. ↑ Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 46
  8. ↑ Milton Abramowitz and Irene A. Stegun, 22.3.15, (s. a. oben „Weblinks“)
  9. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.27, (s. a. oben „Weblinks“)
  10. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.29, (s. a. oben „Weblinks“)
  11. ↑ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 5th edition (1994), ISBN 0-12-294755-X 1.333.4
  12. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.331.3 (Bei dieser Formel enthält Gradshteyn/Ryzhik allerdings einen Vorzeichenfehler)
  13. ↑ a b c d e f g h i j k l m n o I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik, B. G. Teubner Verlagsgesellschaft Leipzig. 19. Auflage 1979. 2.5.2.1.3
  14. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.28, (s. a. oben „Weblinks“)
  15. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.30, (s. a. oben „Weblinks“)
  16. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.335.4
  17. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.335.5
  18. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.331.3
  19. ↑ Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 49
  20. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.321.1
  21. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.321.2
  22. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.321.3
  23. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.321.4
  24. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.321.5
  25. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.323.1
  26. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.323.2
  27. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.323.3
  28. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.323.4
  29. ↑ I. S. Gradshteyn and I. M. Ryzhik, ebenda 1.323.5
  30. ↑ Weisstein, Eric W.: Harmonic Addition Theorem. Abgerufen am 20. Januar 2018 (englisch). 
  31. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.67, (s. a. oben „Weblinks“)
  32. ↑ Milton Abramowitz and Irene A. Stegun, 4.3.70, (s. a. oben „Weblinks“)
  33. ↑ Herbert Amann, Joachim Escher: Analysis I, Birkhäuser Verlag, Basel 2006, 3. Auflage, S. 292 und 298
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Formelsammlung_Trigonometrie&oldid=261939025#Halbwinkelformeln“
Kategorien:
  • Trigonometrie
  • Formelsammlung
  • Liste (Mathematik)

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id