Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. disjunkt – Wikipedia
disjunkt – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie
Dieser Artikel behandelt disjunkte Mengen. Siehe auch Disjunktion (Begriffsklärung).
Zwei disjunkte Mengen

In der Mengenlehre heißen zwei Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} disjunkt (lateinisch disjunctus (-a, -um) ‚getrennt‘), elementfremd oder durchschnittsfremd, wenn sie kein gemeinsames Element besitzen. Mehrere Mengen heißen paarweise disjunkt, wenn beliebige zwei von ihnen disjunkt sind.

Definitionen

[Bearbeiten | Quelltext bearbeiten]
Ein disjunktes Mengensystem

Zwei Mengen A {\displaystyle A} {\displaystyle A} und B {\displaystyle B} {\displaystyle B} sind disjunkt, wenn ihre Schnittmenge leer ist, wenn also gilt:

A ∩ B = ∅ {\displaystyle A\cap B=\emptyset } {\displaystyle A\cap B=\emptyset }.

Eine Familie von Mengen ( M i ) i ∈ I {\displaystyle (M_{i})_{i\in I}} {\displaystyle (M_{i})_{i\in I}} ist eine disjunkte Mengenfamilie, wenn ihre Elemente paarweise disjunkt sind, wenn also gilt:

M i ∩ M j = ∅ {\displaystyle M_{i}\cap M_{j}=\emptyset } {\displaystyle M_{i}\cap M_{j}=\emptyset } für i ≠ j {\displaystyle i\neq j} {\displaystyle i\neq j} und i , j ∈ I {\displaystyle i,j\in I} {\displaystyle i,j\in I}.

Dies lässt sich auch ohne Rückgriff auf Negationen formulieren:

i = j {\displaystyle i=j} {\displaystyle i=j} für alle i , j ∈ I {\displaystyle i,j\in I} {\displaystyle i,j\in I} und x ∈ M i ∩ M j {\displaystyle x\in M_{i}\cap M_{j}} {\displaystyle x\in M_{i}\cap M_{j}}.

Die Vereinigung M {\displaystyle M} {\displaystyle M} einer disjunkten Mengenfamilie nennt man disjunkte Vereinigung und schreibt sie als

M = ⋃ i ∈ I ˙ M i {\displaystyle M={\dot {\bigcup _{i\in I}}}M_{i}} {\displaystyle M={\dot {\bigcup _{i\in I}}}M_{i}}.

Sind außerdem alle Mengen der Familie nichtleer, liegt eine Partition von M {\displaystyle M} {\displaystyle M} vor.

Die Begriffe werden auch analog für Mengensysteme (anstelle von Mengenfamilien) verwendet.

Beispiele

[Bearbeiten | Quelltext bearbeiten]
  • Die Mengen A = { 1 , 2 , 3 } {\displaystyle A=\{1,2,3\}} {\displaystyle A=\{1,2,3\}} und B = { 7 , 8 , 11 } {\displaystyle B=\{7,8,11\}} {\displaystyle B=\{7,8,11\}} sind disjunkt, weil sie kein gemeinsames Element haben.
  • Die Mengen A = { 1 , 2 , 7 } {\displaystyle A=\{1,2,7\}} {\displaystyle A=\{1,2,7\}} und B = { 6 , 7 , 8 , 11 } {\displaystyle B=\{6,7,8,11\}} {\displaystyle B=\{6,7,8,11\}} sind nicht disjunkt, da sie das Element 7 {\displaystyle 7} {\displaystyle 7} gemeinsam haben.
  • Die drei Mengen A = { 1 , 2 , 3 } {\displaystyle A=\{1,2,3\}} {\displaystyle A=\{1,2,3\}}, B = { 4 , 5 } {\displaystyle B=\{4,5\}} {\displaystyle B=\{4,5\}} und C = { 5 , 6 , 7 } {\displaystyle C=\{5,6,7\}} {\displaystyle C=\{5,6,7\}} sind nicht paarweise disjunkt, da zumindest eine der drei möglichen Schnittmengen (nämlich B ∩ C {\displaystyle B\cap C} {\displaystyle B\cap C}) nicht leer ist.
  • Die folgende Aufzählung definierte eine (unendliche) disjunkte Mengenfamilie, die eine Partition der ganzen Zahlen darstellt: { 0 } , { 1 , − 1 } , { 2 , − 2 } , { 3 , − 3 } , { 4 , − 4 } , … {\displaystyle \{0\},\{1,-1\},\{2,-2\},\{3,-3\},\{4,-4\},\ldots } {\displaystyle \{0\},\{1,-1\},\{2,-2\},\{3,-3\},\{4,-4\},\ldots }.
  • Zwei verschiedene Geraden g {\displaystyle g} {\displaystyle g} und h {\displaystyle h} {\displaystyle h} in der euklidischen Ebene sind genau dann disjunkt, wenn sie parallel sind. Die Gesamtheit aller Parallelen zu einer gegebenen Geraden g {\displaystyle g} {\displaystyle g} bildet eine Partition der Ebene.

Weitere Beispiele:

  • Die Menge mit der Spielkarte und dem Buch ist disjunkt zur Menge mit der Gitarre und der Trommel.
    Die Menge mit der Spielkarte und dem Buch ist disjunkt zur Menge mit der Gitarre und der Trommel.
  • Ein paarweise disjunktes Mengensystem
    Ein paarweise disjunktes Mengensystem
  • Ein nicht paarweise disjunktes Mengensystem
    Ein nicht paarweise disjunktes Mengensystem

Anwendung

[Bearbeiten | Quelltext bearbeiten]

Bei der Fragebogenkonstruktion müssen Fragen so formuliert werden, dass die Antwortmöglichkeiten (Begriffsbeziehungen) disjunkt und erschöpfend sind.

Beispiel für nicht-disjunkte Antwortmöglichkeiten: Wie viel verdienen Sie?

  1. 0 bis 1000 Euro
  2. 500 und mehr Euro.

Personen mit einem Verdienst zwischen 500 und 1000 Euro wissen nicht, welche Antwortmöglichkeit sie wählen sollen.

Eigenschaften

[Bearbeiten | Quelltext bearbeiten]
  • Die leere Menge ∅ {\displaystyle \emptyset } {\displaystyle \emptyset } ist disjunkt zu jeder beliebigen Menge.
  • { a } {\displaystyle \{a\}} {\displaystyle \{a\}} und B {\displaystyle B} {\displaystyle B} sind genau dann disjunkt, wenn a ∉ B {\displaystyle a\notin B} {\displaystyle a\notin B}.
  • Die Mächtigkeit einer endlichen disjunkten Vereinigung endlicher Mengen ist gleich der Summe der Einzelmächtigkeiten. Für nicht-disjunkte Vereinigungen gilt die Siebformel.
  • Einelementige Mengensysteme sind immer paarweise disjunkt.
  • Das leere Mengensystem ist paarweise disjunkt[1]

Siehe auch

[Bearbeiten | Quelltext bearbeiten]
  • Lineare Disjunktheit, ein Begriff der abstrakten Algebra im Zusammenhang mit Körpererweiterungen, der mit der hier betrachteten Disjunktheit nur gemeinsam hat, dass die Schnittmenge linear disjunkter Körper kleinstmöglich ist.

Weblinks

[Bearbeiten | Quelltext bearbeiten]
Wiktionary: disjunkt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks: Mathe für Nicht-Freaks: Disjunkte Mengen und paarweise disjunkte Mengensysteme – Lern- und Lehrmaterialien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. ↑ Siehe die Antworten zur Frage „Is the empty family of sets pairwise disjoint?“
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Disjunkt&oldid=250258806“
Kategorie:
  • Mengenlehre

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id