Das Heron-Verfahren, Heronsche Näherungsverfahren oder Babylonische Wurzelziehen ist ein Rechenverfahren zur Berechnung einer Näherung der Quadratwurzel einer reellen Zahl . Hierbei wird die Zahl als Flächeninhalt eines Rechtecks aufgefasst (z. B. mit Seitenlängen und ). Dieses Rechteck wird dann schrittweise in ein flächengleiches Quadrat transformiert, indem man in jedem Rechenschritt die längere Seite des vorherigen Rechtecks verkürzt und seine kürzere Seite so verlängert, so dass der Flächeninhalt erhalten bleibt. Die verkürzte neue längere Seite berechnet sich dabei als Mittelwert der beiden Seiten des vorherigen Rechtecks (siehe Grafik rechts). Das Verfahren ist nach dem griechischen Mathematiker Heron von Alexandria benannt, der es in seinem Werk Metrika beschrieb. Allerdings wurde es schon über 1000 Jahre früher von den Babyloniern benutzt.
Im Gegensatz zum schriftlichen Wurzelziehen benötigt man keinen festgelegten, also korrekten, Ausgangswert. Zudem ist das Verfahren relativ robust gegen Rundungsfehler und konvergiert in der Regel schneller. Jedoch können Wurzeln mit dem Heronverfahren prinzipiell nur näherungsweise berechnet werden.
Geometrische Veranschaulichung und Grundidee
Dem Heron-Verfahren liegt die Idee zu Grunde, dass ein Quadrat mit Flächeninhalt eine Seitenlänge von hat. Ausgangspunkt des Verfahrens ist ein beliebiges Rechteck mit Flächeninhalt . Schritt für Schritt wird das Seitenverhältnis des Rechtecks so geändert, dass sich seine Form immer mehr der eines Quadrats annähert, während der Flächeninhalt gleich bleibt. Die Seitenlängen des Rechtecks sind die Näherungswerte für .
Im ersten Schritt wird eine beliebige Seitenlänge für das Rechteck gewählt. Damit dieses den gewünschten Flächeninhalt hat, wird die zweite Seitenlänge mit der Formel
berechnet. Als Beispiel soll die Wurzel aus 9 berechnet werden. Für die eine Seitenlänge wird der Wert 9 gewählt, sodass sich die andere Seitenlänge zu 1 berechnet. Das erste Rechteck hat deshalb die folgende Form.
Die Ähnlichkeit dieses Rechteckes mit einem Quadrat ist gering. Das kommt auch dadurch zum Ausdruck, dass die Seitenlängen 1 und 9 sehr schlechte Näherungen für die Wurzel aus 9 sind.
Um eine bessere Annäherung an ein Quadrat zu erhalten, muss die lange Seite gekürzt und die kurze Seite verlängert werden. Als neue Länge der langen Seite wird der Mittelwert
der beiden bisherigen Seitenlängen genommen. Die Länge der anderen Seite berechnet sich wie oben zu
- .
Im Beispiel ergibt sich als Mittelwert die Seitenlänge 5. Die dazugehörige kurze Seite hat eine Länge von 1,8.
Auch hier ist die Ähnlichkeit zu einem Quadrat noch gering. Allerdings ist das neue Rechteck im Vergleich zum vorhergehenden kompakter.
Der beschriebene Ablauf wird in jedem weiteren Schritt des Heron-Verfahrens wiederholt. Der Mittelwert der Seitenlängen eines Rechtecks entspricht der Länge der langen Seite des neuen Rechtecks und die Länge der kurzen Seite lässt sich daraus jeweils wie oben beschrieben berechnen. Im Beispiel entstehen so in den nächsten zwei Schritten die folgenden beiden Rechtecke.
Das letzte Rechteck ist schon annähernd quadratisch. Die Seitenlänge 3,024 liegt entsprechend nah bei 3, dem exakten Wert von .
Iterationsverfahren
Aus der geometrischen Grundidee erhält man ein allgemeines Iterationsverfahren zur näherungsweisen Berechnung der Wurzel einer reellen Zahl :
Man geht von einem beliebigen Startwert (idealerweise in der Nähe von ) aus und setzt . Da in jedem Iterationsschritt die eine Seite durch den Mittelwert der beiden Seiten ersetzt wird und die andere Seite so angepasst wird, dass der Flächeninhalt unverändert bleibt, lautet die Iterationsvorschrift
- .
Häufig wird die Iteration in einer Form geschrieben, in der nur noch die Variable vorkommt. Dazu setzt man in die Gleichung für ein und erhält die Rekursionsgleichung
- ,
die eine Folge („Heron-Folge“) von immer besseren Näherungen von liefert.
Alternativ kann diese Rekursionsgleichung auch aus dem Newton-Verfahren für die Nullstelle der quadratischen Funktion hergeleitet werden.
Beispiel
Mithilfe des Heron-Verfahrens soll die Wurzel aus 2 angenähert werden. Als Startwert wird gewählt. Die ersten Glieder der Heron-Folge lauten
Nach drei Iterationen ist die Näherung bereits auf fünf Nachkommastellen genau und die Abweichung vom wahren Wert beträgt somit weniger als 0,0001 %.
Konvergenz
Die Heron-Folge mit konvergiert für jeden Startwert gegen . Somit kann jede Wurzel durch das Iterationsverfahren beliebig angenähert werden.
Beweis |
Alle Glieder der Heron-Folge sind positiv. Man kann nun zeigen, dass sie auch alle wenigstens so groß wie sind und die Heron-Folge somit nach unten beschränkt ist. Dazu zeigt man für beliebiges die Ungleichung :
Weiter zeigt man, dass die Heron-Folge monoton fallend ist:
Aufgrund der Beschränktheit und Monotonie muss die Folge nach dem Monotoniekriterium gegen einen Grenzwert konvergieren. Es bleibt noch zu zeigen, dass . Hierzu ist es zweckmäßig, die Folge zu betrachten, die gegen konvergiert. Aus folgt , also ist . Nun lässt sich der Grenzwert berechnen:
Hieraus erhält man durch elementare Termumformungen , woraus schließlich folgt. |
Der Startwert der Iteration kann sogar, solange er von Null verschieden ist, beliebig festgesetzt werden, die Iteration konvergiert immer. Zu beachten ist, dass bei negativen Startwerten die Iteration gegen die negative Quadratwurzel konvergiert. Da sich das Heron-Verfahren aus dem Newtonschen Näherungsverfahren ableiten lässt und die zu berechnende Nullstelle einfach ist, ist die Konvergenzordnung 2. Die Zahl der richtigen Stellen wird mit jedem Schritt etwa verdoppelt.
Bei einem Startwert in der Nähe von erhält man mithilfe des Heron-Verfahrens schnell gute Näherungswerte, wie das Beispiel verdeutlicht. Wenn die Anfangsnäherung jedoch schlecht ist, sind viele Schritte für eine gute Näherung nötig. Wenn zum Beispiel die Wurzel einer ganzen Zahl mit 200 Binärstellen berechnet werden soll und man als Startwert verwendet, dann wird die Näherung mit jedem Schritt um etwa eine Binärstelle kürzer, d. h. erst nach etwa 100 Schritten hat die Näherung die richtige Länge von 100 Stellen. Danach reichen sechs bis sieben weitere Schritte (), um alle 100 Stellen vor dem Komma richtig zu berechnen. Es empfiehlt sich somit, einen möglichst genauen Startwert zu bestimmen. Im Beispiel sollte man zuerst die Bitlänge von ermitteln und einen Startwert mit der halben Länge verwenden.[A 1] Eine qualifizierte Schätzung für den Startwert erhält man aus der Taylorreihen-Entwicklung der binomischen Reihe um 1, deren zwei erste Glieder die Gleichung liefern.
Das Heron-Verfahren gehört zu den Fixpunktverfahren. Setzt man , so gilt für den Fixpunkt (der die Bedingung erfüllt) mit der (positiven) Lösung .
Fehlerabschätzung
Für die Heron-Folge gilt die Abschätzung
- ,
und für den Fehler die Abschätzung
- .
Angewandt auf obiges Beispiel erhält man:
Für den relativen Fehler
gilt die Rekursion
- .
Die Folge der ist also bei gegebenem relativen Fehler der Startnäherung unabhängig von .
Implementierung in Software
Das Verfahren eignet sich besonders gut zur Implementierung in Software, da nur Grundrechenarten benötigt werden, s. o. Es wird heute angesichts der breiten Verfügbarkeit numerischer Prozessorhardware aber nur noch selten benötigt.
Wenn dazu noch eine Gleitkommadarstellung mit einem Zweier-Exponenten benutzt wird, wird der Ansatz relativ einfach, als Beispiel wird die Wurzel aus 5 betrachtet und der relative Fehler zum Endwert verfolgt:
- Zunächst wird von diesem Zweier-Exponenten eine gerade Anzahl abgespaltet, so dass als Exponent entweder eine 0 oder 1 übrig bleibt, die Zahl also auf das Intervall normalisiert wird. In diesem Intervall ist die Wurzelfunktion eine nur schwach gekrümmte Kurve, lässt sich also numerisch gut behandeln. Beispiel:, es wird also vorerst nur noch mit dem Ziel behandelt.
- Als Startwert für die eigentliche Iteration approximiert man diese Kurve durch eine noch einfachere, die sich direkt ohne Iteration berechnen lässt. Mit dieser Anfangsberechnung wird der Startwert ermittelt, mit dem die folgende Iteration begonnen wird. Man kann diese Kurve mehr oder weniger aufwendig ansetzen, mit den steigend komplizierteren Ansätzen unten lässt sich gegebenenfalls ein Iterationsschritt einsparen:
- eine einfache Konstante (beispielsweise 1),
Beispiel: , relativer Fehler - eine Gerade mit Steigung und einer additiven Konstante von als Vereinfachung des nachfolgenden Falls
Beispiel: , relativer Fehler - eine Gerade mit Steigung und einer additiven, optimierten Konstante von ,
Beispiel: , relativer Fehler . - eine Gerade mit optimierter Steigung und einer additiven Konstante hier nicht näher betrachtet.
- eine einfache Konstante (beispielsweise 1),
- Ausgehend von dem so ermittelten Startwert führt man eine feste Anzahl von Iterationsschritten durch. Die nötige Anzahl, um die gewünschte Genauigkeit zu erreichen, lässt sich dank der obigen Fehlerabschätzung als Worst Case innerhalb des Startintervalls direkt ausrechnen. Bei 32 Bits Mantisse und dem mittleren Startansatz braucht man beispielsweise nur drei Schritte. Diese fest gewählte Anzahl erspart wesentlich aufwendigere Abfragen auf Erreichung der Genauigkeit. Der Ersatz der genannten Konstanten durch die Zahl 1,0 ändert daran nichts. Auch der noch kompliziertere Ansatz brächte zumindest bei dieser Genauigkeit keine Einsparung eines weiteren Iterationsschritts. Bei höheren Genauigkeitsanforderungen kann das anders aussehen.
Beispiel mit drei Schritten nach Ansatz 1 (Konstante 1, mit den anderen Ansätzen konvergiert es noch einen Schritt schneller):
, relativer Fehler , relativer Fehler
, relativer Fehler kleiner als
Man sieht die Wirkung der quadratischen Konvergenz, dass sich der relative Fehler von Schritt zu Schritt jeweils quadriert oder die Anzahl gültiger Stellen bzw. der negative Fehlerexponent etwa verdoppelt. - Zum Schluss wird der Exponent restauriert, indem man die Hälfte des im ersten Schritt abgespalteten Werts wieder hinzufügt.
Beispiel: .
Verallgemeinerung des Verfahrens
Näherung höherer Wurzeln
Dieses Verfahren lässt sich verallgemeinern, um die k-te Wurzel einer Zahl näherungsweise zu berechnen. Dabei wird das Newton-Verfahren zur Bestimmung der positiven Nullstelle der Funktion angewandt. Mit folgt aus der Rekursionsformel des Newton-Verfahrens die Iterationsvorschrift
Beispielsweise lautet die Rekursionsformel zur Berechnung der Kubikwurzel
Hier muss die Folge mit einem geeigneten Startwert für den gesuchten Wert von gestartet werden.
Je größer ist, desto mehr Schritte werden benötigt, um die Wurzel genau zu berechnen. Für ganzzahliges positives gelten die gleichen Konvergenzaussagen wie oben für
Näherung des Kehrwerts
Für erhält man ein Verfahren, mit dem (ohne Verwendung der Division!) der Kehrwert näherungsweise errechnet werden kann:
Dieses Verfahren konvergiert für alle quadratisch gegen
Die Iteration ermöglichte für erste Computer ohne eingebaute Division die Zurückführung dieser Operation auf Multiplikation und Subtraktion. Die Division von zwei Zahlen wurde so ausgeführt, dass der Kehrwert des Nenners bestimmt wurde und mit dem Zähler multipliziert wurde.
Beispiel
Es soll näherungsweise berechnet werden mit dem Startwert :
Für den Startwert erhält man
somit keine Konvergenz gegen den gesuchten Wert von
Geschichte
Das Verfahren war in Mesopotamien bereits zur Zeit des babylonischen Königs Hammurapi I. (ca. 1750 v. Chr.) bekannt.[1] Um 100 n. Chr. wurde es von Heron von Alexandria im ersten Buch seines Werkes Metrika beschrieben.[2]
Literatur
- Jochen Ziegenbalg, Oliver Ziegenbalg, Bernd Ziegenbalg: Algorithmen: Von Hammurapi bis Gödel. 4. Auflage. Springer Spektrum, Wiesbaden 2016, ISBN 978-3-658-12362-8, S. 55–60.
- David Fowler, Eleanor Robson: Square Root Approximations in Old Babylonian Mathematics. In: Historia Mathematica, Band 25, Nr. 4, 1998, S. 366–378 (sciencedirect.com).
- Hans Rudolf Schwarz, Norbert Köckler: Numerische Mathematik. 7. Auflage. Vieweg+Teubner, Wiesbaden 2009, ISBN 978-3-8348-0683-3, S. 192–194.
- Dietmar Herrmann: Die antike Mathematik. 3. Auflage. Springer Spektrum, Berlin 2024, ISBN 978-3-662-68477-1, S. 337–339.
- Konrad Königsberger: Analysis 1. 6. Auflage. Springer, Berlin / Heidelberg 2004, ISBN 978-3-540-40371-5, S. 48–49.
Weblinks
- Das Heron-Verfahren zur Wurzelberechnung auf arndt-bruenner.de (Erläuterung und Beispielrechner)
- Interaktive Illustration in GeoGebra (Papp)
- Interaktive Illustration in GeoGebra (Leo)
Anmerkungen
- ↑ Startwert: Sofern der Ausgangswert bereits als Binärzahl (im Stellenwertsystem) vorliegt, kann einfach gezählt werden, an welcher Stelle seine höchstwertige '1' steht; Startwert wird dann . Sofern der Ausgangswert in (Binär-)Exponentialdarstellung vorliegt, kann als Startwert einfach der Exponent halbiert werden (um 1 Bit nach rechts schieben). Siehe auch Abschnitt Implementierung in Software
Einzelnachweise
- ↑ Jochen Ziegenbalg, Oliver Ziegenbalg, Bernd Ziegenbalg: Algorithmen: Von Hammurapi bis Gödel. Springer Spektrum 2016, S. 55 (Auszug (Google)).
- ↑ John J. O’Connor, Edmund F. Robertson: Heron-Verfahren. In: MacTutor History of Mathematics archive (englisch).