Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Multiindex – Wikipedia
Multiindex – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie

In der Mathematik fasst man häufig mehrere Indizes zu einem einzigen Multiindex zusammen. Formal gesehen ist ein Multiindex α = ( α 1 , … , α n ) {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},\ldots ,\alpha _{n})} {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},\ldots ,\alpha _{n})} ein Tupel natürlicher Zahlen.

Verallgemeinert man Formeln von einer Variable auf mehrere Variablen, so ist es aus notationstechnischen Gründen meist sinnvoll, die Multiindexschreibweise zu verwenden. Ein Beispiel wäre, eine Potenzreihe mit einer Veränderlichen auf Mehrfachpotenzreihen umzuschreiben. Multiindizes werden häufig in der mehrdimensionalen Analysis und Theorie der Distributionen verwendet.

Konventionen der Multiindex-Schreibweise

[Bearbeiten | Quelltext bearbeiten]

In diesem Abschnitt seien α = ( α 1 , … , α n ) ,   k = ( k 1 , … , k n ) ,   ℓ = ( ℓ 1 , … , ℓ n ) ∈ N 0 n {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},\ldots ,\alpha _{n}),\ {\boldsymbol {k}}=(k_{1},\ldots ,k_{n}),\ {\boldsymbol {\ell }}=(\ell _{1},\ldots ,\ell _{n})\in \mathbb {N} _{0}^{n}} {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},\ldots ,\alpha _{n}),\ {\boldsymbol {k}}=(k_{1},\ldots ,k_{n}),\ {\boldsymbol {\ell }}=(\ell _{1},\ldots ,\ell _{n})\in \mathbb {N} _{0}^{n}} jeweils n {\displaystyle n} {\displaystyle n}-Tupel natürlicher Zahlen. Für die Multiindex-Schreibweise werden üblicherweise die folgenden Konventionen vereinbart:

k = ℓ ⟺ k 1 = ℓ 1 , … , k n = ℓ n k ≤ ℓ ⟺ k 1 ≤ ℓ 1 , … , k n ≤ ℓ n k + ℓ := ( k 1 + ℓ 1 , … , k n + ℓ n ) k ! := k 1 ! ⋯ k n ! ( α k ) := α ! ( α − k ) ! k ! = ( α 1 k 1 ) ⋯ ( α n k n ) | k | := k 1 + ⋯ + k n x k := x 1 k 1 ⋯ x n k n D k := D 1 k 1 ⋯ D n k n , {\displaystyle {\begin{array}{ccl}{\boldsymbol {k}}={\boldsymbol {\ell }}&\iff &k_{1}=\ell _{1}\;,\;\ldots \;,\;k_{n}=\ell _{n}\\\\{\boldsymbol {k}}\leq {\boldsymbol {\ell }}&\iff &k_{1}\leq \ell _{1}\;,\;\ldots \;,\;k_{n}\leq \ell _{n}\\\\{\boldsymbol {k}}+{\boldsymbol {\ell }}&:=&(k_{1}+\ell _{1}\;,\;\ldots \;,\;k_{n}+\ell _{n})\\\\{\boldsymbol {k}}!&:=&k_{1}!\cdots k_{n}!\\\\{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}&:=&{\frac {{\boldsymbol {\alpha }}!}{({\boldsymbol {\alpha -k}})!\,{\boldsymbol {k}}!}}={\alpha _{1} \choose k_{1}}\cdots {\alpha _{n} \choose k_{n}}\\\\|{\boldsymbol {k}}|&:=&k_{1}+\cdots +k_{n}\\\\{\boldsymbol {x}}^{\boldsymbol {k}}&:=&x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}\\\\{\boldsymbol {D}}^{\boldsymbol {k}}&:=&D_{1}^{k_{1}}\cdots D_{n}^{k_{n}}\,,\end{array}}} {\displaystyle {\begin{array}{ccl}{\boldsymbol {k}}={\boldsymbol {\ell }}&\iff &k_{1}=\ell _{1}\;,\;\ldots \;,\;k_{n}=\ell _{n}\\\\{\boldsymbol {k}}\leq {\boldsymbol {\ell }}&\iff &k_{1}\leq \ell _{1}\;,\;\ldots \;,\;k_{n}\leq \ell _{n}\\\\{\boldsymbol {k}}+{\boldsymbol {\ell }}&:=&(k_{1}+\ell _{1}\;,\;\ldots \;,\;k_{n}+\ell _{n})\\\\{\boldsymbol {k}}!&:=&k_{1}!\cdots k_{n}!\\\\{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}&:=&{\frac {{\boldsymbol {\alpha }}!}{({\boldsymbol {\alpha -k}})!\,{\boldsymbol {k}}!}}={\alpha _{1} \choose k_{1}}\cdots {\alpha _{n} \choose k_{n}}\\\\|{\boldsymbol {k}}|&:=&k_{1}+\cdots +k_{n}\\\\{\boldsymbol {x}}^{\boldsymbol {k}}&:=&x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}\\\\{\boldsymbol {D}}^{\boldsymbol {k}}&:=&D_{1}^{k_{1}}\cdots D_{n}^{k_{n}}\,,\end{array}}}

wobei x ∈ C n {\displaystyle {\boldsymbol {x}}\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {x}}\in \mathbb {C} ^{n}} und D {\displaystyle {\boldsymbol {D}}} {\displaystyle {\boldsymbol {D}}} einen Differentialoperator bezeichnet.

Anwendungsbeispiele

[Bearbeiten | Quelltext bearbeiten]

Potenzreihe

[Bearbeiten | Quelltext bearbeiten]

Eine Mehrfachpotenzreihe ∑ k 1 ≥ 0 ⋯ ∑ k n ≥ 0 a k 1 , … , k n ( z 1 − z 1 o ) k 1 ⋯ ( z n − z n o ) k n {\displaystyle \sum _{k_{1}\geq 0}\cdots \sum _{k_{n}\geq 0}a_{k_{1},\ldots ,k_{n}}(z_{1}-z_{1}^{o})^{k_{1}}\cdots (z_{n}-z_{n}^{o})^{k_{n}}} {\displaystyle \sum _{k_{1}\geq 0}\cdots \sum _{k_{n}\geq 0}a_{k_{1},\ldots ,k_{n}}(z_{1}-z_{1}^{o})^{k_{1}}\cdots (z_{n}-z_{n}^{o})^{k_{n}}} lässt sich kurz schreiben als ∑ k ≥ 0 a k ( z − z o ) k {\displaystyle \sum _{{\boldsymbol {k}}\geq 0}a_{\boldsymbol {k}}({\boldsymbol {z}}-{\boldsymbol {z}}^{o})^{\boldsymbol {k}}} {\displaystyle \sum _{{\boldsymbol {k}}\geq 0}a_{\boldsymbol {k}}({\boldsymbol {z}}-{\boldsymbol {z}}^{o})^{\boldsymbol {k}}}.

Potenzfunktion

[Bearbeiten | Quelltext bearbeiten]

Ist x ∈ R n {\displaystyle {\boldsymbol {x}}\in \mathbb {R} ^{n}} {\displaystyle {\boldsymbol {x}}\in \mathbb {R} ^{n}} und sind k , m ∈ N n {\displaystyle {\boldsymbol {k}},{\boldsymbol {m}}\in \mathbb {N} ^{n}} {\displaystyle {\boldsymbol {k}},{\boldsymbol {m}}\in \mathbb {N} ^{n}}, so gilt D k x m m ! = x m − k ( m − k ) ! {\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {{\boldsymbol {x}}^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}={\frac {{\boldsymbol {x}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}}{({\boldsymbol {m}}-{\boldsymbol {k}})!}}} {\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {{\boldsymbol {x}}^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}={\frac {{\boldsymbol {x}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}}{({\boldsymbol {m}}-{\boldsymbol {k}})!}}} und D k | x | m m ! = | x | m − | k | ( m − | k | ) ! {\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {|{\boldsymbol {x}}|^{m}}{m!}}={\frac {|{\boldsymbol {x}}|^{m-|{\boldsymbol {k}}|}}{(m-|{\boldsymbol {k}}|)!}}} {\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {|{\boldsymbol {x}}|^{m}}{m!}}={\frac {|{\boldsymbol {x}}|^{m-|{\boldsymbol {k}}|}}{(m-|{\boldsymbol {k}}|)!}}}.

Geometrische Reihe

[Bearbeiten | Quelltext bearbeiten]

Für − 1 < x < 1 {\displaystyle -{\boldsymbol {1}}<{\boldsymbol {x}}<{\boldsymbol {1}}} {\displaystyle -{\boldsymbol {1}}<{\boldsymbol {x}}<{\boldsymbol {1}}} gilt ∑ | k | ≥ 0 x k = 1 ( 1 − x ) 1 {\displaystyle \sum _{|{\boldsymbol {k}}|\geq 0}{\boldsymbol {x}}^{\boldsymbol {k}}={\frac {1}{({\boldsymbol {1}}-{\boldsymbol {x}})^{\boldsymbol {1}}}}} {\displaystyle \sum _{|{\boldsymbol {k}}|\geq 0}{\boldsymbol {x}}^{\boldsymbol {k}}={\frac {1}{({\boldsymbol {1}}-{\boldsymbol {x}})^{\boldsymbol {1}}}}}, wobei 1 = ( 1 , … , 1 ) {\displaystyle {\boldsymbol {1}}=(1,\ldots ,1)} {\displaystyle {\boldsymbol {1}}=(1,\ldots ,1)} ist.

Binomischer Lehrsatz

[Bearbeiten | Quelltext bearbeiten]

Sind x , y ∈ C n {\displaystyle {\boldsymbol {x}},{\boldsymbol {y}}\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {x}},{\boldsymbol {y}}\in \mathbb {C} ^{n}} und ist m ∈ N n {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}} {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}}, so gilt ( x + y ) m = ∑ k ≤ m ( m k ) x k y m − k {\displaystyle ({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}{\boldsymbol {x}}^{\boldsymbol {k}}{\boldsymbol {y}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}} {\displaystyle ({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}{\boldsymbol {x}}^{\boldsymbol {k}}{\boldsymbol {y}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}} bzw. ( x + y ) m m ! = ∑ k + j = m x k k ! y j j ! {\displaystyle {\frac {({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}{\frac {{\boldsymbol {y}}^{\boldsymbol {j}}}{{\boldsymbol {j}}!}}} {\displaystyle {\frac {({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}{\frac {{\boldsymbol {y}}^{\boldsymbol {j}}}{{\boldsymbol {j}}!}}}.

Multinomialtheorem

[Bearbeiten | Quelltext bearbeiten]

Für x = ( x 1 , … , x n ) ∈ R n {\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{n})\in \mathbb {R} ^{n}} {\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{n})\in \mathbb {R} ^{n}} und m ∈ N {\displaystyle m\in \mathbb {N} } {\displaystyle m\in \mathbb {N} } ist ( x 1 + ⋯ + x n ) m = ∑ k 1 + ⋯ + k n = m ( m k 1 , … , k n ) x 1 k 1 ⋯ x n k n {\displaystyle (x_{1}+\cdots +x_{n})^{m}=\sum _{k_{1}+\cdots +k_{n}=m}{m \choose k_{1},\ldots ,k_{n}}x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}} {\displaystyle (x_{1}+\cdots +x_{n})^{m}=\sum _{k_{1}+\cdots +k_{n}=m}{m \choose k_{1},\ldots ,k_{n}}x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}} bzw. ( x 1 + ⋯ + x n ) m m ! = ∑ k 1 + ⋯ + k n = m x 1 k 1 k 1 ! ⋯ x n k n k n ! {\displaystyle {\frac {(x_{1}+\cdots +x_{n})^{m}}{m!}}=\sum _{k_{1}+\cdots +k_{n}=m}{\frac {x_{1}^{k_{1}}}{k_{1}!}}\cdots {\frac {x_{n}^{k_{n}}}{k_{n}!}}} {\displaystyle {\frac {(x_{1}+\cdots +x_{n})^{m}}{m!}}=\sum _{k_{1}+\cdots +k_{n}=m}{\frac {x_{1}^{k_{1}}}{k_{1}!}}\cdots {\frac {x_{n}^{k_{n}}}{k_{n}!}}}, was sich kurz schreiben lässt als | x | m m ! = ∑ | k | = m x k k ! {\displaystyle {\frac {|{\boldsymbol {x}}|^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}} {\displaystyle {\frac {|{\boldsymbol {x}}|^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}}.

Leibniz-Regel

[Bearbeiten | Quelltext bearbeiten]

Ist m ∈ N n {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}} {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}} und sind f , g : R n → R {\displaystyle f,g\colon \mathbb {R} ^{n}\to \mathbb {R} } {\displaystyle f,g\colon \mathbb {R} ^{n}\to \mathbb {R} } m-mal stetig differenzierbare Funktionen, so gilt

( f g ) ( m ) = ∑ k ≤ m ( m k ) f ( k ) g ( m − k ) {\displaystyle (fg)^{({\boldsymbol {m}})}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}f^{({\boldsymbol {k}})}g^{({\boldsymbol {m}}-{\boldsymbol {k}})}} {\displaystyle (fg)^{({\boldsymbol {m}})}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}f^{({\boldsymbol {k}})}g^{({\boldsymbol {m}}-{\boldsymbol {k}})}}

beziehungsweise

( f g ) ( m ) m ! = ∑ k + j = m f ( k ) k ! g ( j ) j ! {\displaystyle {\frac {(fg)^{({\boldsymbol {m}})}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {f^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}{\frac {g^{({\boldsymbol {j}})}}{{\boldsymbol {j}}!}}} {\displaystyle {\frac {(fg)^{({\boldsymbol {m}})}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {f^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}{\frac {g^{({\boldsymbol {j}})}}{{\boldsymbol {j}}!}}}.

Diese Identität heißt Leibniz-Regel.

Und sind f 1 , … , f n : R → R {\displaystyle f_{1},\ldots ,f_{n}\colon \mathbb {R} \to \mathbb {R} } {\displaystyle f_{1},\ldots ,f_{n}\colon \mathbb {R} \to \mathbb {R} } m-mal stetig differenzierbare Funktionen, so ist

( f 1 ⋯ f n ) m m ! = ∑ | k | = m f ( k ) k ! {\displaystyle {\frac {(f_{1}\cdots f_{n})^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {f}}^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}} {\displaystyle {\frac {(f_{1}\cdots f_{n})^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {f}}^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}},

wobei f ( k ) = ( f 1 , … , f n ) ( ( k 1 ) , … , ( k n ) ) = f 1 ( k 1 ) ⋯ f n ( k n ) {\displaystyle {\boldsymbol {f}}^{({\boldsymbol {k}})}=(f_{1},\ldots ,f_{n})^{{\big (}(k_{1}),\ldots ,(k_{n}){\big )}}=f_{1}^{(k_{1})}\cdots f_{n}^{(k_{n})}} {\displaystyle {\boldsymbol {f}}^{({\boldsymbol {k}})}=(f_{1},\ldots ,f_{n})^{{\big (}(k_{1}),\ldots ,(k_{n}){\big )}}=f_{1}^{(k_{1})}\cdots f_{n}^{(k_{n})}} ist.

Cauchy-Produkt

[Bearbeiten | Quelltext bearbeiten]

Für Mehrfachpotenzreihen f ( z ) = ∑ | ℓ | ≥ 0 a ℓ z ℓ , g ( z ) = ∑ | ℓ | ≥ 0 b ℓ z ℓ {\displaystyle f({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}a_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}\;,\;g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}b_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}} {\displaystyle f({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}a_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}\;,\;g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}b_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}} gilt f ( z ) g ( z ) = ∑ | ℓ | ≥ 0 ( ∑ k + j = ℓ a k b j ) z ℓ {\displaystyle f({\boldsymbol {z}})\,g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}\left(\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {\ell }}}a_{\boldsymbol {k}}\,b_{\boldsymbol {j}}\right){\boldsymbol {z}}^{\boldsymbol {\ell }}} {\displaystyle f({\boldsymbol {z}})\,g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}\left(\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {\ell }}}a_{\boldsymbol {k}}\,b_{\boldsymbol {j}}\right){\boldsymbol {z}}^{\boldsymbol {\ell }}}.

Sind f 1 ( z ) = ∑ ℓ = 0 ∞ a 1 ℓ z ℓ , … , f n ( z ) = ∑ ℓ = 0 ∞ a n ℓ z ℓ {\displaystyle f_{1}(z)=\sum _{\ell =0}^{\infty }a_{1\ell }z^{\ell }\;,\;\ldots \;,\;f_{n}(z)=\sum _{\ell =0}^{\infty }a_{n\ell }z^{\ell }} {\displaystyle f_{1}(z)=\sum _{\ell =0}^{\infty }a_{1\ell }z^{\ell }\;,\;\ldots \;,\;f_{n}(z)=\sum _{\ell =0}^{\infty }a_{n\ell }z^{\ell }} Potenzreihen einer Veränderlichen, so gilt f 1 ( z ) ⋯ f n ( z ) = ∑ ℓ = 0 ∞ ( ∑ | k | = ℓ a k ) z ℓ {\displaystyle f_{1}(z)\cdots f_{n}(z)=\sum _{\ell =0}^{\infty }\left(\sum _{|{\boldsymbol {k}}|=\ell }a_{\boldsymbol {k}}\right)z^{\ell }} {\displaystyle f_{1}(z)\cdots f_{n}(z)=\sum _{\ell =0}^{\infty }\left(\sum _{|{\boldsymbol {k}}|=\ell }a_{\boldsymbol {k}}\right)z^{\ell }}, wobei a k = a 1 k 1 ⋯ a n k n {\displaystyle a_{\boldsymbol {k}}=a_{1k_{1}}\cdots a_{nk_{n}}} {\displaystyle a_{\boldsymbol {k}}=a_{1k_{1}}\cdots a_{nk_{n}}} ist.

Exponentialreihe

[Bearbeiten | Quelltext bearbeiten]

Für z = ( z 1 , . . . , z n ) ∈ C n {\displaystyle {\boldsymbol {z}}=(z_{1},...,z_{n})\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {z}}=(z_{1},...,z_{n})\in \mathbb {C} ^{n}} gilt e z 1 + . . . + z n = ∑ k ∈ N 0 n z k k ! {\displaystyle e^{z_{1}+...+z_{n}}=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {{\boldsymbol {z}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}} {\displaystyle e^{z_{1}+...+z_{n}}=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {{\boldsymbol {z}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}}.

Binomische Reihe

[Bearbeiten | Quelltext bearbeiten]

Sind α , x ∈ C n {\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {x}}\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {x}}\in \mathbb {C} ^{n}} und sind alle Komponenten von x {\displaystyle {\boldsymbol {x}}} {\displaystyle {\boldsymbol {x}}} betragsmäßig < 1 {\displaystyle <1\,} {\displaystyle <1\,}, so gilt ( 1 + x ) α = ∑ | k | ≥ 0 ( α k ) x k {\displaystyle ({\boldsymbol {1}}+{\boldsymbol {x}})^{\boldsymbol {\alpha }}=\sum _{|{\boldsymbol {k}}|\geq 0}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}\,{\boldsymbol {x}}^{\boldsymbol {k}}} {\displaystyle ({\boldsymbol {1}}+{\boldsymbol {x}})^{\boldsymbol {\alpha }}=\sum _{|{\boldsymbol {k}}|\geq 0}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}\,{\boldsymbol {x}}^{\boldsymbol {k}}}.

Vandermondesche Konvolution

[Bearbeiten | Quelltext bearbeiten]

Ist m ∈ N n {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}} {\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}} und sind α , β ∈ C n {\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {C} ^{n}}, so gilt ( α + β m ) = ∑ k ≤ m ( α k ) ( β m − k ) = ∑ k + j = m ( α k ) ( β j ) {\displaystyle {{\boldsymbol {\alpha }}+{\boldsymbol {\beta }} \choose {\boldsymbol {m}}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {m}}-{\boldsymbol {k}}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {j}}}} {\displaystyle {{\boldsymbol {\alpha }}+{\boldsymbol {\beta }} \choose {\boldsymbol {m}}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {m}}-{\boldsymbol {k}}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {j}}}}.

Ist m ∈ N {\displaystyle m\in \mathbb {N} } {\displaystyle m\in \mathbb {N} } und α = ( α 1 , . . . , α n ) ∈ C n {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},...,\alpha _{n})\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},...,\alpha _{n})\in \mathbb {C} ^{n}}, so gilt ( | α | m ) = ∑ | k | = m ( α k ) {\displaystyle {|{\boldsymbol {\alpha }}| \choose m}=\sum _{|{\boldsymbol {k}}|=m}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}} {\displaystyle {|{\boldsymbol {\alpha }}| \choose m}=\sum _{|{\boldsymbol {k}}|=m}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}}.

Cauchysche Integralformel

[Bearbeiten | Quelltext bearbeiten]

In mehreren Veränderlichen z 1 , … , z n {\displaystyle z_{1},\ldots ,z_{n}\,} {\displaystyle z_{1},\ldots ,z_{n}\,} lässt sich die cauchysche Integralformel

D k f ( z 1 , … , z n ) k ! = 1 ( 2 π i ) n ∮ ∂ U n ⋯ ∮ ∂ U 1 f ( ξ 1 , … , ξ n ) ( ξ 1 − z 1 ) k 1 + 1 ⋯ ( ξ n − z n ) k n + 1 d ξ 1 ⋯ d ξ n {\displaystyle {\frac {D^{\boldsymbol {k}}f(z_{1},\ldots ,z_{n})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{n}}}\oint _{\partial U_{n}}\cdots \oint _{\partial U_{1}}{\frac {f(\xi _{1},\ldots ,\xi _{n})}{(\xi _{1}-z_{1})^{k_{1}+1}\cdots (\xi _{n}-z_{n})^{k_{n}+1}}}d\xi _{1}\cdots d\xi _{n}} {\displaystyle {\frac {D^{\boldsymbol {k}}f(z_{1},\ldots ,z_{n})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{n}}}\oint _{\partial U_{n}}\cdots \oint _{\partial U_{1}}{\frac {f(\xi _{1},\ldots ,\xi _{n})}{(\xi _{1}-z_{1})^{k_{1}+1}\cdots (\xi _{n}-z_{n})^{k_{n}+1}}}d\xi _{1}\cdots d\xi _{n}}

kurz schreiben als

a k := D k f ( z ) k ! = 1 ( 2 π i ) 1 ∮ ∂ U f ( ξ ) ( ξ − z ) k + 1 d ξ {\displaystyle a_{\boldsymbol {k}}:={\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{\boldsymbol {1}}}}\oint _{\partial {\boldsymbol {U}}}{\frac {f({\boldsymbol {\xi }})}{({\boldsymbol {\xi }}-{\boldsymbol {z}})^{{\boldsymbol {k}}+{\boldsymbol {1}}}}}\,{\boldsymbol {d\xi }}} {\displaystyle a_{\boldsymbol {k}}:={\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{\boldsymbol {1}}}}\oint _{\partial {\boldsymbol {U}}}{\frac {f({\boldsymbol {\xi }})}{({\boldsymbol {\xi }}-{\boldsymbol {z}})^{{\boldsymbol {k}}+{\boldsymbol {1}}}}}\,{\boldsymbol {d\xi }}},

wobei ∂ U = ∂ U 1 × ⋯ × ∂ U n {\displaystyle \partial {\boldsymbol {U}}=\partial U_{1}\times \cdots \times \partial U_{n}} {\displaystyle \partial {\boldsymbol {U}}=\partial U_{1}\times \cdots \times \partial U_{n}} sein soll. Ebenso gilt die Abschätzung | a k | ≤ M r k {\displaystyle |a_{\boldsymbol {k}}|\leq {\tfrac {M}{{\boldsymbol {r}}^{\boldsymbol {k}}}}} {\displaystyle |a_{\boldsymbol {k}}|\leq {\tfrac {M}{{\boldsymbol {r}}^{\boldsymbol {k}}}}}, wobei M = max ξ ∈ ∂ U | f ( k ) | {\displaystyle \textstyle M=\max _{{\boldsymbol {\xi }}\in \partial {\boldsymbol {U}}}|f({\boldsymbol {k}})|} {\displaystyle \textstyle M=\max _{{\boldsymbol {\xi }}\in \partial {\boldsymbol {U}}}|f({\boldsymbol {k}})|} ist.

Taylor-Reihe

[Bearbeiten | Quelltext bearbeiten]

Ist f : R n → R {\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} } {\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} } eine analytische Funktion oder f : C n → C {\displaystyle f\colon \mathbb {C} ^{n}\to \mathbb {C} } {\displaystyle f\colon \mathbb {C} ^{n}\to \mathbb {C} } eine holomorphe Abbildung, so kann man f {\displaystyle f} {\displaystyle f} mit Hilfe eines Entwicklungspunktes z 0 ∈ R n {\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {R} ^{n}} {\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {R} ^{n}} oder z 0 ∈ C n {\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {C} ^{n}} in einer Taylorreihe

f ( z ) = ∑ k ∈ N 0 n D k f ( z 0 ) k ! ( z − z 0 ) k {\displaystyle f({\boldsymbol {z}})=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}}_{0})}{{\boldsymbol {k}}!}}({\boldsymbol {z}}-{\boldsymbol {z}}_{0})^{\boldsymbol {k}}} {\displaystyle f({\boldsymbol {z}})=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}}_{0})}{{\boldsymbol {k}}!}}({\boldsymbol {z}}-{\boldsymbol {z}}_{0})^{\boldsymbol {k}}}

darstellen.

Hurwitz-Identität

[Bearbeiten | Quelltext bearbeiten]

Für x , y ∈ C {\displaystyle x,y\in \mathbb {C} } {\displaystyle x,y\in \mathbb {C} } mit x ≠ 0 {\displaystyle x\neq 0} {\displaystyle x\neq 0} und a = ( a 1 , . . . , a n ) ∈ C n {\displaystyle {\boldsymbol {a}}=(a_{1},...,a_{n})\in \mathbb {C} ^{n}} {\displaystyle {\boldsymbol {a}}=(a_{1},...,a_{n})\in \mathbb {C} ^{n}} gilt ( x + y ) n = ∑ 0 ≤ k ≤ 1 x ( x + a ⋅ k ) | k | − 1 ( y − a ⋅ k ) n − | k | {\displaystyle (x+y)^{n}=\sum _{{\boldsymbol {0}}\leq {\boldsymbol {k}}\leq {\boldsymbol {1}}}x\,(x+{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{|{\boldsymbol {k}}|-1}\,(y-{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{n-|{\boldsymbol {k}}|}} {\displaystyle (x+y)^{n}=\sum _{{\boldsymbol {0}}\leq {\boldsymbol {k}}\leq {\boldsymbol {1}}}x\,(x+{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{|{\boldsymbol {k}}|-1}\,(y-{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{n-|{\boldsymbol {k}}|}}.

Dies verallgemeinert die Abelsche Identität ( x + y ) n = ∑ k = 0 n ( n k ) x ( x + a k ) k − 1 ( y − a k ) n − k {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}\,x\,(x+ak)^{k-1}\,(y-ak)^{n-k}} {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}\,x\,(x+ak)^{k-1}\,(y-ak)^{n-k}}.

Letztere erhält man im Fall a = ( a , a , . . . , a ) {\displaystyle {\boldsymbol {a}}=(a,a,...,a)} {\displaystyle {\boldsymbol {a}}=(a,a,...,a)}.

Literatur

[Bearbeiten | Quelltext bearbeiten]
  • Otto Forster: Analysis. Band 2: Differentialrechnung im Rn. Gewöhnliche Differentialgleichungen. 7. verbesserte Auflage. Vieweg + Teubner, Wiesbaden 2006, ISBN 3-8348-0250-6 (Vieweg Studium. Grundkurs Mathematik).
  • Konrad Königsberger: Analysis. Band 2. 3. überarbeitete Auflage. Springer-Verlag, Berlin u. a. 2000, ISBN 3-540-66902-7.
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Multiindex&oldid=251169007“
Kategorie:
  • Mathematischer Grundbegriff

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id