Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Diffusionskoeffizient – Wikipedia
Diffusionskoeffizient – Wikipedia 👆 Click Here!
aus Wikipedia, der freien Enzyklopädie

Der Diffusionskoeffizient D {\displaystyle D} {\displaystyle D}, auch Diffusionskonstante oder Diffusivität genannt, ist ein Transportkoeffizient und dient in den Fickschen Gesetzen zur Berechnung des thermisch bedingten Transports eines Stoffes aufgrund der zufälligen Bewegung der Teilchen. Dabei kann es sich um einzelne Atome in einem Feststoff oder um Teilchen in einem Gas oder einer Flüssigkeit handeln. Der Diffusionskoeffizient ist daher ein Maß für die Beweglichkeit der Teilchen und lässt sich nach der Einstein-Smoluchowski-Gleichung aus dem durchschnittlichen Quadrat der zurückgelegten Wegstrecke ⟨ x 2 ⟩ {\displaystyle \langle x^{2}\rangle } {\displaystyle \langle x^{2}\rangle } pro Zeit t {\displaystyle t} {\displaystyle t} ermitteln:

D = ⟨ x 2 ⟩ 2 t {\displaystyle D={\frac {\langle x^{2}\rangle }{2t}}} {\displaystyle D={\frac {\langle x^{2}\rangle }{2t}}} (oder alternativ mittels der Green-Kubo-Relationen).

Die SI-Einheit des Diffusionskoeffizienten ist daher m 2 / s {\displaystyle \mathrm {m^{2}/s} } {\displaystyle \mathrm {m^{2}/s} }. Zur Angabe des Diffusionskoeffizienten gehört immer die Angabe, welcher Stoff in welchem Stoff diffundiert, sowie als wichtigste Einflussgröße die Temperatur.

In Gasen

[Bearbeiten | Quelltext bearbeiten]
Beispiele für Diffusionskoeffizienten in Gasen (bei 1 atm)
System Temperatur in °C Diffusionskoeffizient in m²/s
Luft – Sauerstoff 0 1,76 × 10−5
Luft – Kohlendioxid 8,9 1,48 × 10−5
44,1 1,77 × 10−5
Wasserstoff – Stickstoff 24,1 7,79 × 10−5

Diffusionskoeffizienten in Gasen[1][2] sind stark abhängig von Temperatur und Druck. In erster Näherung gilt, dass eine Verdopplung des Druckes zur Halbierung des Diffusionskoeffizienten führt.

Der Diffusionskoeffizient folgt gemäß der Chapman-Enskog-Theorie folgender Gleichung für zwei gasförmige Stoffe (Indizes 1 und 2):[3]

D 12 = 3 8 ( N π M 1 + M 2 2 M 1 M 2 ) 1 2 ( k B T ) 3 2 p σ 12 2 Ω 12 ∗ {\displaystyle D_{12}={\frac {3}{8}}\left({\frac {N}{\pi }}{\frac {M_{1}+M_{2}}{2M_{1}M_{2}}}\right)^{\frac {1}{2}}{\frac {\left(k_{\mathrm {B} }T\right)^{\frac {3}{2}}}{p\sigma _{12}^{2}\Omega _{12}^{*}}}} {\displaystyle D_{12}={\frac {3}{8}}\left({\frac {N}{\pi }}{\frac {M_{1}+M_{2}}{2M_{1}M_{2}}}\right)^{\frac {1}{2}}{\frac {\left(k_{\mathrm {B} }T\right)^{\frac {3}{2}}}{p\sigma _{12}^{2}\Omega _{12}^{*}}}}

mit den physikalischen Größen

  • D 12 {\displaystyle D_{12}} {\displaystyle D_{12}} – Diffusionskoeffizient
  • N – Avogadro-Konstante
  • M1,2 – molare Massen der Stoffe
  • kB – Boltzmann-Konstante
  • T – Temperatur
  • p – Druck
  • σ 12 = σ 1 + σ 2 2 {\displaystyle \sigma _{12}={\frac {\sigma _{1}+\sigma _{2}}{2}}} {\displaystyle \sigma _{12}={\frac {\sigma _{1}+\sigma _{2}}{2}}} – (mittlerer) Kollisionsdurchmesser (Werte tabelliert[3])
  • Ω 12 {\displaystyle \Omega _{12}} {\displaystyle \Omega _{12}} – Kollisionsintegral, abhängig von Temperatur und Stoffen (Werte tabelliert[3], Größenordnung: 1).

Für die Selbstdiffusion (d. h. für den Fall, dass nur eine Teilchensorte vorhanden ist) vereinfacht sich o. g. Zusammenhang zu:[4]

D = 1 3 v ¯ l = 2 3 1 n d 2 k B T π 3 m {\displaystyle D={\frac {1}{3}}{\bar {v}}\,l={\frac {2}{3}}{\frac {1}{n\,d^{2}}}{\sqrt {\frac {k_{\mathrm {B} }\,T}{\pi ^{3}\,m}}}} {\displaystyle D={\frac {1}{3}}{\bar {v}}\,l={\frac {2}{3}}{\frac {1}{n\,d^{2}}}{\sqrt {\frac {k_{\mathrm {B} }\,T}{\pi ^{3}\,m}}}}

mit

  • v ¯ {\displaystyle {\bar {v}}} {\displaystyle {\bar {v}}} – mittlere thermische Geschwindigkeit der Teilchen
  • l – mittlere freie Weglänge
  • n – Teilchenzahldichte
  • d – Teilchendurchmesser
  • kB – Boltzmann-Konstante
  • m – Molekülmasse

In Flüssigkeiten

[Bearbeiten | Quelltext bearbeiten]
Beispiele für Diffusionskoeffizienten in Wasser (bei unendlicher Verdünnung und 25 °C)
Stoff Diffusionskoeffizient in m²/s
Sauerstoff 2,1 × 10−9
Schwefelsäure 1,73 × 10−9
Ethanol 0,84 × 10−9
Temperaturabhängigkeit des Diffusionskoeffizienten von 100-nm-Kügelchen (R0=50nm) in Wasser

Diffusionskoeffizienten in Flüssigkeiten[1] betragen in der Regel etwa ein Zehntausendstel von Diffusionskoeffizienten in Gasen. Sie werden beschrieben durch die Stokes-Einstein-Gleichung:[5]

D = k B T 6 π η R 0 {\displaystyle D={\frac {k_{\mathrm {B} }\,T}{6\,\pi \,\eta \,R_{0}}}} {\displaystyle D={\frac {k_{\mathrm {B} }\,T}{6\,\pi \,\eta \,R_{0}}}}

mit

  • kB – Boltzmann-Konstante
  • T – Temperatur
  • η – dynamische Viskosität des Lösungsmittels
  • R0 – hydrodynamischer Radius der diffundierenden Teilchen

Auf dieser Gleichung basieren viele empirische Korrelationen.

Die Viskosität des Lösungsmittels ist eine Funktion der Temperatur. Die Abhängigkeit des Diffusionskoeffizienten von der Temperatur ist nichtlinear.

Diffusionskoeffizienten in Mischungen von Flüssigkeiten sind schwer zu beschreiben und nur wenige Modelle hierzu verfügbar, z. B. die Entropieskalierung[6].

In Feststoffen

[Bearbeiten | Quelltext bearbeiten]
Beispiele für Diffusionskoeffizienten in Feststoffen
System Temperatur in °C Diffusionskoeffizient in m²/s
Wasserstoff in Eisen 10 1,66 × 10−13
50 11,4 × 10−13
100 124 × 10−13
Kohlenstoff in Eisen 800 15 × 10−13
1100 450 × 10−13
Gold in Blei 285 0,46 × 10−13

Diffusionskoeffizienten in Feststoffen[1] sind in der Regel mehrere tausend Mal kleiner als Diffusionskoeffizienten in Flüssigkeiten.

Für die Diffusion in Festkörpern sind Sprünge zwischen verschiedenen Gitterplätzen erforderlich. Dabei müssen die Teilchen eine Energiebarriere E überwinden, was bei höherer Temperatur leichter möglich ist als bei niedrigerer. Dies wird beschrieben durch den Zusammenhang:[7]

D = D 0 exp ⁡ ( − E R T ) {\displaystyle D=D_{0}\,\exp \left(-{\frac {E}{R\,T}}\right)} {\displaystyle D=D_{0}\,\exp \left(-{\frac {E}{R\,T}}\right)}

mit

  • E – Energiebarriere
  • R – allgemeine Gaskonstante
  • T – Temperatur.

D0 lässt sich näherungsweise berechnen als:

D 0 ≈ α 0 2 N ω {\displaystyle D_{0}\approx \alpha _{0}^{2}\,N\,\omega } {\displaystyle D_{0}\approx \alpha _{0}^{2}\,N\,\omega }

mit

  • α0 – Atomabstand
  • N – Anteil der vakanten Gitterplätze
  • ω – Sprungfrequenz

Allerdings empfiehlt es sich, insbesondere Diffusionskoeffizienten in Feststoffen experimentell zu bestimmen.

Effektiver Diffusionskoeffizient

[Bearbeiten | Quelltext bearbeiten]

Der effektive Diffusionskoeffizient[8] D e {\displaystyle D_{e}} {\displaystyle D_{e}} beschreibt Diffusion durch den Porenraum poröser Medien. Da er nicht einzelne Poren, sondern den gesamten Porenraum betrachtet, ist er eine makroskopische Größe:

D e = ε t δ τ D {\displaystyle D_{e}={\frac {\varepsilon _{t}\,\delta }{\tau }}\,D} {\displaystyle D_{e}={\frac {\varepsilon _{t}\,\delta }{\tau }}\,D}

mit

  • εt – Porosität, die für den Transport zur Verfügung steht; sie entspricht der Gesamtporosität abzüglich Poren, die aufgrund ihrer Größe für die diffundierenden Teilchen nicht zugänglich sind, und abzüglich Sackgassen- und blinder Poren (Poren ohne Verbindung zum restlichen Porensystem)
  • δ – Konstriktivität; sie beschreibt die Verlangsamung der Diffusion durch eine Erhöhung der Viskosität in engen Poren als Folge der größeren durchschnittlichen Nähe zur Porenwand und ist eine Funktion von Porendurchmesser und Größe der diffundierenden Teilchen.
  • τ – Tortuosität („Gewundenheit“)

Scheinbarer Diffusionskoeffizient

[Bearbeiten | Quelltext bearbeiten]

Der scheinbare (apparente) Diffusionskoeffizient[8] erweitert den effektiven Diffusionskoeffizienten um den Einfluss der Sorption.

Für lineare Sorption berechnet er sich zu:

D a = D e 1 + K d ρ ϵ {\displaystyle D_{a}={\frac {D_{e}}{1+{\frac {K_{d}\,\rho }{\epsilon }}}}} {\displaystyle D_{a}={\frac {D_{e}}{1+{\frac {K_{d}\,\rho }{\epsilon }}}}}

mit

  • Kd – linearer Sorptionskoeffizient
  • ρ – Rohdichte
  • ε – Porosität

Bei nichtlinearer Sorptionsisotherme ist der scheinbare Diffusionskoeffizient stets eine Funktion der Konzentration, was die Berechnung der Diffusion erheblich erschwert.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. ↑ a b c E. L. Cussler: Diffusion – Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge/New York, 1997, ISBN 0-521-56477-8.
  2. ↑ T. R. Marrero, E. A. Mason: Gaseous Diffusion Coefficients. In: Journal of Physical and Chemical Reference Data. Band 1, Nr. 1, 1. Januar 1972, ISSN 0047-2689, S. 3–118, doi:10.1063/1.3253094 (nist.gov [PDF; abgerufen am 8. Oktober 2017]). 
  3. ↑ a b c J. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, New York, 1954, ISBN 0-471-40065-3
  4. ↑ Franz Durst: Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden. Springer, Berlin, 2006, ISBN 3-540-31323-0.
  5. ↑ A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (PDF; 733 kB), Annalen der Physik. 17, 1905, S. 549ff.
  6. ↑ Sebastian Schmitt, Hans Hasse, Simon Stephan: Entropy scaling for diffusion coefficients in fluid mixtures. In: Nature Communications. Band 16, Nr. 1, 17. März 2025, ISSN 2041-1723, doi:10.1038/s41467-025-57780-z, PMID 40097384, PMC 11914492 (freier Volltext) – (nature.com [abgerufen am 10. April 2025]). 
  7. ↑ W. Jost: Diffusion in solids, liquids and gases. Academic Press Inc., New York, 1960.
  8. ↑ a b P. Grathwohl: Diffusion in natural porous media: Contaminant transport, sorption/desorption and dissolution kinetics. Kluwer Academic Publishers, 1998, ISBN 0-7923-8102-5.
Abgerufen von „https://de.teknopedia.teknokrat.ac.id/w/index.php?title=Diffusionskoeffizient&oldid=259543661“
Kategorien:
  • Statistische Physik
  • Physikalische Chemie

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id